	Last Updated: 1/16/2024 2:02 PM
	Court Notify API
	Page 1 of 1

Court Notify Service Provider Guide
Last Updated: 1/16/2024

Court Notify (CourtNotify) is a software as a service providing a solution for public organizations to communicate with public audiences by sending emails and/or text messages and handling opt-in/out. It’s an easy and quick pluggable solution for your multiple departments. It provides Web APIs for programmable service uses and a website for online usage.

[bookmark: Support_Contact]Developed by Los Angeles Superior Court’s Court Notify team.
Team Leader: Sky Kim <yjkim@lacourt.org>
System Admin Contact: Hector Pila <hpila@lacourt.org >
Table of Contents
Why Should I use CourtNotify?	1
Required for Communication with the Public	2
Email	2
Text Message	3
Cost and Time Saving	3
Pluggable Solution	3
Handles Opt-in/out and more	3
Quick Start	4
For Non-Developers, follow these steps:	5
For Developers, follow these steps:	5
Sign Up for an Account	5
Submit API Access Request	7
Create/Request Subscription	9
Call our API	11
General Concept	11
Overall Process Diagram	12
Message Grouping Structure	12
Service Provider Account	13
Grouping Messages	13
Service	13
Message Group	13
Subscription	13
Service Details	14
Custom ‘From Email’	15
‘From Email’ Format	15
Domain Registration	15
Sending emails with a Verified Domain	15
Reply-To Email	16
Text Message Replies	18
General	18
Common Scenarios	18
Rare Multiple Scenarios	19
Data Retention	23
Developer API Guide	24
Web API	24
Common	24
Message API	27
ShortURL API	56
VerificationCode API	56
HelloAuthorizedWorld API	56
HelloWorld API	56
API Client	56
API Client Library for .NET NuGet package	56
Call Limit Policy	56
Error Handling	56
Warning Messages	56
Specifying TimeOffset	56
Value Tables	56
Message Type	56
MessageQueue Status	56
Phone Invalid Reason	56
Email Invalid Reason	56
API Errors	56
MessageQueue Errors	56
HTTP Requests Status Codes	56
Data Type Common Rule	56
Date Time	56
Phone Number	56
Email Attachments	56
CallBack URL	56
Using Website instead of API calls	56
Service Provider	56
Services	56
Message Groups	56
Message Log	56
Send Message	56
Testing	56
Browser Support	56
Release Note	56

[bookmark: _Toc1814202082]Why Should I use CourtNotify?
Sending notifications to the public seems like a simple task, but it isn’t. There are many details required for programming and regulations you must take care of. You can save cost and time by taking advantage of the trials and errors the CourtNotify team went through by simply using CourtNotify.
[bookmark: _Toc1682658232]Required for Communication with the Public
[bookmark: _Toc1114112099]Email
When you send emails to public recipients, you must not use Outlook. Outlook is not supposed to be used for public broadcasting and some or many of the emails sent won’t be delivered properly because of the increasing security used by email services, DMARC (SFP and DKIM).
[image:]
If you send an email from Outlook to a public recipient, it fails DKIM authentication as shown above because ‘From’ email domain “lacourt.org” is different from the sending service domain “onmicrosoft.com”. An email service may consider this email as a phishing email and put it into the SPAM/JUNK folder or block it completely.
CourtNotify is designed to avoid this issue and allows you to register your domain and send emails with your domain. The email sent by CourtNotify below passes all security requirements.
[image:]

CourtNotify follows the best practice suggested by Mail-tester to maximize the delivery rate to the recipient’s email inbox.
[image: Graphical user interface, text, application, email

Description automatically generated]
[bookmark: _Toc834193889]Text Message
When you broadcast Text Messages to the public, you need to use a pre-approved ‘Short Code’ to follow the best practice by avoiding the risk of being marked as spam out of the available options.
[bookmark: _Toc1518986200]Cost and Time Saving
It costs and takes time to prepare an environment to send emails and text messages by following the best practice.
Acquiring Short Code for the best practice of sending text messages takes a few months to register and costs $11k a year on top of the usage cost. CourtNotify holds a dedicated Short Code and will acquire more as volume goes up. Preparing an environment to send emails securely takes time to follow the email best practices. CourtNotify has built the environment following the best practice and will put effort to keep its good status to deliver the emails to the recipients properly.
CourtNotify is ready for you to use. You don’t need to spend time and money to build the same solution.
[bookmark: _Toc501830595]Pluggable Solution
You can send emails and text messages using an Email Service (Mailgun.com) and Text Message Service (Twilio.com) directly. Although it takes time and effort, it might be reasonable for you to build your solution if you need it for only ONE service such as “Appointment Reminder Notification”. However, as soon as another service or department wants to send emails and/or text messages to the public, you MUST duplicate all the setup and programming. Or you have to build a solution like CourtNotify, a pluggable solution.
CourtNotify is a pluggable solution that you can add multiple services for multiple departments easily. And you can send messages immediately about the new services.
[bookmark: _Toc666530597]Handles Opt-in/out and more
CourtNotify has the common features required for communication with the public. Opt-In/Out is one of them and is handled by CourtNotify.
CourtNotify supports more common features such as email and phone number validation and a safe Short-Url.

[bookmark: _Toc1816408249]Quick Start
Please follow this Quick Start guide to initiate the process of accessing the Court Notify API.
[bookmark: _Toc1454869393]For Non-Developers, follow these steps:
· Signing Up for an Account
· Submit API Access Request
[bookmark: _Toc1137154296]For Developers, follow these steps:
· Signing Up for an Account
· Submit API Access Request
· Create/Request Subscription
· Calling our API
[bookmark: _Toc1310721358]Sign Up for an Account
1. Service Provider (SP) go to ‘Service Provider Website’ URL:
https://courtnotifysp.lacourt.org
[image: Graphical user interface, website

Description automatically generated]

2. Click on the ‘Sign up’ button to create a user account for the Service Provider website.
a. Email must be able to receive incoming email messages.
[image:]
3. SP will receive an email from the Service Provider Website and will need to “click” on the link to activate the account.
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML22ae3c.PNG]
4. Click on the ‘Sign in’ tab located on the top right corner of the website and enter the Email and Password to Sign In.
[image:]
[bookmark: _Submit_API_Access][bookmark: _Toc424313559]Submit API Access Request
1. Click on ‘Profile’ and enter your organization name under ‘Client credential’ (e.g. Los Angeles Superior Court, Orange County Superior Court) and fill out Request Details. Once finished, please click the ‘Submit API Access Request’.
 [image: Graphical user interface, application

Description automatically generated]
 [image:]
2. Admin approves the Client credential request and the user will also receive an email confirmation of the approved request.
3. SP will be able to see the Client ID.
[image:]
4. (FOR Non-Developers ONLY)
a. If you are using the website only for ‘Sending Message’ and not using our API, please just add ‘Services’.
b. Now you can Send Messages on the website without having to proceed forward with the remaining steps.
5. (For Developers)
a. Please continue onto ‘Create/Request Subscription’ below.

[bookmark: _Create/Request_Subscription][bookmark: _Toc1135947908]Create/Request Subscription
1. 'Add Secret' on the ‘Profile’ page.
[image:]
2. SP selects ‘Products’ and submits a subscription request for the ‘Development’ product.
=>Development has a limitation on the number of calls you can make. This is best to use to test your application before utilizing the ‘Production’ product. For more information regarding ‘Products’, please refer to the Limit Calls section in this guide.

[image: Graphical user interface, application

Description automatically generated]
[image:]
[image:]
3. A subscription key is generated but it is not usable until Admin approves of the subscription.
[image:]
4. Once approved by the admin, the SP’s subscription key for the product is now active.
5. SP add Services.
[bookmark: _Call_our_API][bookmark: _Toc1966948625]Call our API
1. SP now has a client ID, secret, subscription key, and service id.
You can call Web API for Development with the information.
2. After testing in Development, SP can now request for ‘Production’ product.
3. Admin approves of the subscription.
4. SP calls Web API for Production.
You must use the ‘Production’ subscription key for production.
5. You can use our API Client Library for .NET to send out calls.

[bookmark: _Toc227330702]General Concept
This includes the general system overview with Process Diagram, the structure of Message Grouping, and an explanation of the Service Provider account including the grouping of Messages.
[bookmark: _Toc386057121]Overall Process Diagram
[image:]
· Service Provider request Client Id, Secrete, Subscription Key, and create a Service from Service Provider Website.
· System Admin approves of the request.
· Service Provider can configure their information to call our Court Notify Web API.
· The recipient can register to receive messages from the Service Provider Application.
· The recipient will receive messages and has the ability to Opt-in/Opt-Out of the service.

[bookmark: _Toc1237528409]Message Grouping Structure
Firstly, the following three terms need to be understood and considered with their respective associations:
Service Provider Account (e.g. Your team)
|_____ Services (e.g. Application)
 |_____ Message Group (e.g. Case Number)
You need to create a Service Provider Account to request API access. Then, you need to set up a Service to specify your application that calls API. If you want to group messages further, you can specify Message Group on each message with your ad-hoc unique identifier. The following details apply:
[bookmark: _Toc191784714]Service Provider Account
The service provider is the client who has an account to call API.
· One login account registered to Service Provider Portal.
· One account per team is recommended.
· One client id is assigned per account. Client Id is used to call API.
[bookmark: _Grouping_Messages][bookmark: _Toc599072454][bookmark: Grouping_Messages]Grouping Messages
The system allows to group messages in two levels: Service and Message Group.
One Account has one or more services. Each service can optionally have multiple Message Groups.
· Recipients can opt-in/out per Message Group if it exists.
If there is no Message Group, they can opt-in/out per service.
· The system allows a recipient to opt-out of all messages.
[bookmark: _Services_1][bookmark: _Toc231266585]Service
One team might have multiple applications that need to call API. Each application can be a service.
· At least one service is required to call API.
· This is a logical grouping of messages.
We recommend one service for each application.
· Services must specify whether they will Use a Message Group or not. This is enforced to prevent the recipient from Opt-Out of the entire Service as a whole.
[bookmark: _Message_Group][bookmark: _Toc301704910]Message Group
When you want to group messages per case or so, this ad-hoc grouping can be used.
· Optional.
· Message Groups can be specified when calling each message.
· It’s ad-hoc grouping by any string as long as it’s unique. You can specify Id with the service abbreviation prefix to make it unique.
· E.g.) If you have a Service named Event, you can specify your Message group as “EV-ba434-gdfg45ga34g”
[bookmark: _Subscription][bookmark: _Toc1164431700][bookmark: Subscription]Subscription
The term ‘Subscription’ represents the Service and Message Group that the recipient agreed to receive a text or email message. Recipients don’t need to understand what Services or Message Groups mean to Opt-In/Opt-Out because they will only see the ‘Subscription’.
Example of a Subscription using a Service
The Service being used is called “LACOURTCONNECTFINANCIAL-1” which sends notifications of financial payments to recipients using LA Court Connect. The image below, with the red box, highlights the name we display to our recipient in the email.
Caption: Email Message
[image:]
Example of a Subscription using a Message Group
This text message below is using a Message Group called “Divorce/Dissolution of Marriage Orientation (Part 1 of 3) With Minor Children event at 2:00 PM on 7/6/2020.” This Message Group is under a Service called “Event”. By using the Subscription Name as “Divorce/Dissolution..”, it allows the recipient to Opt-In/Opt-Out of that Message Group only, instead of the entire Service by mistake.
Caption: Text Message
[image:]

[bookmark: _API_Client_Library]

[bookmark: _Toc1062106235]Service Details
This section explains the rules while sending emails, sending text messages and how long messages will be kept.
[bookmark: _Toc1317241694][bookmark: Custom_FromEmail]Custom ‘From Email’
[bookmark: Why_do_I_have_to_register_our_domain]Register your domain for custom branding using your domain in ‘From Email’ with this format “{FriendlyFromName} <{EmailAccount}@{RegisteredDomain} such as “OC Court Appointment <appointment-noreply@occourt.org>". By registering your domain, you can specify your ‘From Email’ instead of using our Sender Email: “Court Notify <No-ReplyCourtNotify@lacourt.org”.
[bookmark: _Toc625714333]‘From Email’ Format
· {FriendlyFromName}: This is the friendly name that recipients will see first instead of the Email Account.
· {EmailAccount}: The email address name that is used to send the email from.
· {RegisteredDomain}: The domain that is registered by the Service Provider to specify their branded email.
[bookmark: _Toc488789796]Domain Registration
To register your domain, you will need to specify the domain that you want to use and email it to the System Admin. An example of a domain is “lacourt.org”, “occourt.org”, etc.
Email Template to send to System Admin:
	Email Subject: Domain registration on Court Notify for {InsertOrganizationName}

Email Body:

Hello,

I would like to submit a request to use this domain: {InsertYourDomain}

Reason: I need to register my domain because.…

Emails Used: The emails I will be using from my Organization are {InsertEmailsThatWillBeUsed}.

[bookmark: _Toc796035616]Sending emails with a Verified Domain
Currently, you can only use the API to specify ‘FromEmail’ and ‘FriendlyFromName’ to send out your emails with your domain. Please see SendEmailMessage > Parameters to use ‘FromEmail’ and ‘FriendlyFromName’.
This is the hierarchy that ‘FromEmail’ and ‘FriendlyFromName’ will follow. First, at the Message level, Court Notify will use the specified ‘FromEmail’ and ‘FriendlyFromName’. If that isn’t provided, then it moves up to the Service level, and then the Organization level. Ultimately, the default will be used if the domain hasn’t been registered yet.
 Here is an example below.
· Default
· From Email: No-ReplyCourtNotify@lacourt.org
· Friendly Name: Court Notify
· Organization
· From Email: CaliforniaCourtNotification@CACourt.org
· Friendly Name: California Court
· Service
· From Email: CaliforniaCourtAppointment@CACourt.org
· Friendly Name: California Court Appointment
· Message
· From Email: CaliforniaCourt@CACourt.org
· Friendly Name: California Court
Service
Message
Organization
Default

[bookmark: _Toc1927911049][bookmark: ReplyToEmail]Reply-To Email
You can specify your Reply-To email on the message level, then it will be used on the Service level, and followed by the Organization level last. Please see SendEmailMessage > Parameters to use ‘ReplyToEmail and ‘FriendlyReplyToName’.
You need to contact the System Admin to add Reply-To email and Friendly Reply To Name on the Organization level.
Here is an example below of specifying Reply-To email and Friendly Reply to Name:
· Organization
· Reply-To Email: NO-REPLYOCC@occ.org
· Friendly Name: NO-REPLY
· Service
· Reply-To Email: NO-REPLYAppointmentOCC@occ.org
· Friendly Name: NO-REPLYAppointment
· Message
· Reply-To Email: NO-REPLYAppointmentSELF-HELPOCC@occ.org
· Friendly Name: NO-REPLY SELF-HELP
Organization
Service
Message

[bookmark: _Toc2019426578]Text Message Replies
[bookmark: _Toc2119912392]General
Court Notify will handle text message replies from recipients such as “Stop”, “Start”, and “Help”. When a recipient replies with these commands, Court Notify will reply to each response based on each scenario. The system also supports industry-standard synonyms for each command, for example, CANCEL is equivalent to STOP.
*Please note there may be delays on some carriers for response times.
Key Terms
· Recipient: Anyone who has a subscription.
· Subscription: This can be either a subscription service or a message group.
[bookmark: _Toc894271986]Common Scenarios
Most recipients would have only one concurrent subscription and the conversation would be simple.
The recipient replied “STOP”
STOP
You stopped msgs from [Court appointment at 12/1/19 3:30 PM].

36412
>

The recipient wanted to Opt-Out of receiving messages from the Subscription name “Court appointment at 12/1/19 3:30 PM”.
The recipient replied “START”
START
You now receive msgs from [Court appointment at 12/1/19 3:30 PM].

36412
>

The recipient wanted to Opt-In to start receiving messages from the Subscription name “Court appointment at 12/1/19 3:30 PM”.
The recipient replied “HELP”
HELP
You receive msgs from [Court appointment at 12/1/19 3:30 PM]. Reply ‘STOP’ to stop receiving msgs. Msg&data rates may apply. For detail, visit https://s.lacourt.org/H

36412
>

The recipient needed Help and the System replied with the active Subscription that the recipient receives messages from and a link to see more commands from the System.
[bookmark: _Toc2027214342]Rare Multiple Scenarios
In rare cases, a recipient might have multiple concurrent subscriptions. This could occur mostly to an attorney user who represents multiple recipients. In this case, the system helps the customer choose the right subscription to Opt-In/Opt-Out.
The recipient replied “STOP”
You stopped msgs from [Court appointment at 12/1/19 3:30 PM].

STOP ONE
STOP
Reply 'STOP ONE' to stop [Court appointment at 12/1/19 3:30 PM]. Reply ‘LIST’ to see all 3 subscriptions, or 'STOP ALL' to stop all. Msg&data rates may apply.

36412
>

The recipient has multiple Subscriptions and texts “STOP”, but our System sent the recipient multiple options to handle the subscription. The recipient chose to “STOP ONE” to Opt-Out of their current subscription.
You stopped msgs from [Traffic Payment Plan for Ticket #DF00012].

STOP 2
These are your subscription(s):
1. [Court appointment at 12/1/19 3:30 PM]
2. [Traffic Payment Plan for Ticket #DF00012]
3. [Jury Duty] (Stopped)
You have 1 stopped subscription(s).

Reply 'START #' or 'STOP #' to start/stop receiving msgs from the subscription by the number '#' (1-3). Reply ‘START All’ or ‘STOP ALL’ to start/stop msgs from all subscriptions. Msg&data rates may apply.

LIST
STOP
Reply 'STOP ONE' to stop [Court appointment at 12/1/19 3:30 PM]. Reply ‘LIST’ to see all 3 subscriptions, or 'STOP ALL' to stop all. Msg&data rates may apply.

36412
>

The recipient has multiple Subscriptions and texts “STOP”. The system presented the recipient with multiple options to choose from and the recipient used “LIST”. The “LIST” command is best used when the recipient has multiple Subscriptions. “LIST” shows the recipient all of their Subscriptions and also shows if the Subscription is (Stopped) meaning Opt-Out. The recipient can “STOP #” from the list of Subscriptions shown. This recipient decided to “STOP 2” to Opt-Out of the “Traffic Payment Plan for Ticket #DF00012”.
STOP ALL
You stopped msgs from all 3 subscriptions.

STOP
Reply 'STOP ONE' to stop [Court appointment at 12/1/19 3:30 PM]. Reply ‘LIST’ to see all 3 subscriptions, or 'STOP ALL' to stop all. Msg&data rates may apply.

36412
>

The recipient has multiple Subscriptions and texts “STOP”. The system presented the recipient with multiple options to choose from and the recipient used “STOP ALL” to Opt-Out of all the Subscriptions.

The recipient replied “START”
You now receive msgs from all 3 subscriptions.

START ALL
These are your subscription(s):
1. [Court appointment at 12/1/19 3:30 PM] (stopped)
2. [Traffic Payment Plan for Ticket #DF00012] (stopped)
3. [Jury Duty] (Stopped)
You have 3 stopped subscription(s).

Reply 'START #' to start recieving msgs from the subscription by the number #, or 'START ALL' to start all 3 subscriptions. Msg&data rates may apply.
LIST
START
Reply 'START ONE' to receive msgs from [Court appointment at 12/1/19 3:30 PM]. Reply ‘LIST’ to see all 3 subscriptions. Msg&data rates may apply.

36412
>

The recipient texted “START” and was presented with multiple options from our System. The recipient texted “LIST” to see all their Subscriptions that were (Stopped) meaning Opt-Out. The recipient wanted to receive messages from them again, so the recipient texted “START ALL” to Opt-In for all of their Subscriptions.

[bookmark: _Toc753614627]Data Retention
Your messages will be stored for a certain amount of time. Once the time has been reached, it will be removed from the database.
· Message Groups: When Message Groups are expired, they will be removed.
· Message Logs: After 90 days, the messages will be removed.
For details, see ‘Message Groups’ and ‘Message Log’ for more information on how long data will be available.
[bookmark: _Toc1788779231]Developer API Guide
This section will teach you what methods we have to use to get started on using Court Notify.
[bookmark: _Toc2073564688]Web API
APIs contain operations for notification and further communication with the public using text messages and email.
· It is a standard REST API with OAuth 2.0 protocol.
· It uses Microsoft Azure API Management technology.
Here we use the Postman tool to demonstrate API calls.
(Download the Postman tool from https://www.getpostman.com)
[bookmark: _Toc2007837147]Common
This section describes the general concepts and requirements that apply to all API calls.
[bookmark: _Authentication]Authentication
To call an API operation, you need to pass an access token and set the subscription key in the header.
Get Access Token
Navigate to Authorization on Postman, click on the drop-down for Type and select ‘OAuth 2.0’. Then click on the ‘Get New Access Token’ button.
[image: Graphical user interface, application

Description automatically generated]
You can get the Client ID and secret from the Service Provider Website.
For other values, you enter the exact value shown below.

[image: Graphical user interface, application

Description automatically generated]
· Grant Type: Client Credentials
· Access Token URL: https://login.microsoftonline.com/ dc94c3c7-bb48-40ff-9305-e473fd6f6a16 /oauth2/v2.0/token
· Client Id: {Add your Client Id}
· Client Secret: {Add your Client Secret}
· Scope: api://PubShareAPIM-Public/.default

Set Headers
You can get a subscription key from the Service Provider Website.
[image: Graphical user interface, application

Description automatically generated]
· Content-Type:
Application/JSON
· Ocp-Apim-Subscription-Key:
{Key Generated}

Common Returns
All API operation calls return the following basic information. The different return values of each API are described in its API section.
	Property Name
	Type
	Description
	Example

	APIResult.successful
	Bool
	True if the call is successful.
	True

	APIResult.error
	String
	When an API call fails, this contains detailed information about why it failed such as whether the passed parameter value is invalid, or the recipient mobile number is invalid.

Error contains
- Code (string): Unique error id.
- Description (string): Description of the error.
- Message (string): This contains further ad-hoc detail of the error specific to this call.

See the list of API errors.
	"error":
{
"code": "100",
"description": "Required value is missing.",
"message": "Required field 'MessageGroupTitle' is missing.",
"httpStatusCode": 0
}

	APIResult.value
	Object
	This property contains the actual value of the requested data by the caller.

The value type varies for each API. Please see each API section for the details.
	

	APIResult.Warning
	String
	This is a warning message that is displayed to the client.
	Duplicated ‘MobileNumbers’ {12223334444}”

[bookmark: Version]Version
This allows new API improvements while supporting the existing API implementation simultaneously. When the call is used without a Version, the call will be using the latest version.
To change the version in APIs, look for [version] and then replace it with the version you want from the History.
Example
To use the new version, change [version] to “V1” or the latest version, as shown below:
Endpoint Template: https://CourtNotifyAPI.lacourt.org/msg/[version]/SendTextMessage
Actual URL: https://CourtNotifyAPI.lacourt.org/msg/V1/SendTextMessage
This will allow you to use Version 1 on our API.
No Version Specified
When you don’t specify the version, it uses the latest API version.
**Note that if the API new version changes the method signature, your existing code may break if it is not updated. We recommend you use a specific version.
Example: Use the original URLs without any version.
Using this URL: https://CourtNotifyAPI.lacourt.org/msg/SendTextMessage will use the latest version.
[bookmark: Version_History]Change History for each Version
	Date
	Version
	Description

	08/31/2022
	V2
	Updates for V2:
· ‘SendTextMessage’ and ‘SendEmailMessage’ version change.
· ‘SendEmailMessageInBulkV2‘ has two new parameter objects ‘EmailMessageRequests’ and ‘EmailAttachments’.
· ’SendTextMessageInBulkV2’ has one new parameter object ‘TextMessageRequests’.

	08/02/2022
	V1
	Introducing to API version.

[bookmark: _Toc1660205632][bookmark: _Hlk69719714]Message API
This API provides a way of handling communication with recipients: send a text or email message, check the status of the message and retrieve the message log, etc.
Versioning information can be found under Version.
Available Operations:
· SendTextMessage
· SendTextMessageInBulk
· SendTextMessageInBulkV2
· SendEmailMessage
· SendEmailMessageInBulk
· SendEmailMessageInBulk V2
· GetMessageQueue
· SearchMessageQueue
· GetPhoneOptInOut
· GetEmailOptInOut
· UpdateMessageGroupStatus
· GetPhone
· GetEmailMessageStatus
· UpdateMessageGroupExpiredOn
· UpdateMessageGroupTitle
· GetBulkMessageQueue
· CheckInvalidMobileNumber
· [bookmark: SendTextMessage]CheckInvalidEmailAddress
SendTextMessage
Sends a text message to the mobile number of a recipient.
This operation has a limit on the number of times you can call it. Refer to Call Limit Policy for more details.
	[bookmark: _Hlk33018723]VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/SendTextMessage

[bookmark: _PARAMETERS][bookmark: SendTextMessage_Parameters]Post Body
· Name: “textMessageRequest”
· Type: TextMessageRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of TextMessageRequest>>

	ServiceId
	Integer
	The registered service under which this message is sent. Service is the default group of messages, called a subscription that the recipient can Opt-in or out of.

The Service Provider can manage the services on the Service Provider website, and get this id.
	1

	MobileNumbers

	List
	This is the recipient’s mobile number. Mobile numbers can have multiple phone numbers in a list.
	[“2133107000”,”12099657121”]

	TextMessage
	String
(Max: 4000)
	Text message to send.

The text message is split into segments for every 160 characters and the text message cost counts per segment.

NOTE that the message must contain “Msg&data rates may apply.” at the end of the message when you put a message expecting the recipient’s reply.
	Your jury duty summons meeting is scheduled for 05/30/2021. Please text the letter 'C' to confirm your receipt of this message. This reply is mandatory. Msg&data rates may apply.

	MessageGroupId (optional)
	String
(Max: 50)
	Unique identifier in the string to group messages under service to give recipients to Opt-In or Out. If MessageGroup is not specified, ‘Service’ is used to group messages to Opt-in or Out.

A case number is a common example of this.

This id must be unique in the system, we recommend you append the prefix of your service with a few characters, such as “JURY”, “TPP”, “AT”.
	JURY-CTKS1245134

	MessageGroupTitle (optional)
	String
(Max: 200)
	Recipient-friendly text for the MessageGroupId.
This text displays to the recipient.
	Case John Smith vs. People of LA

	MessageGroupExpireOn (optional)
	DateTime
	The expiration date of this Message Group (specified by MessageGroupId) is used to decide whether to show this MessageGroup to the recipient. Once expired, this message group does not display to the recipient when they want to see the list of subscriptions they are opt-in or out of.

By default 2 months away from the current time is set as the expiration date.
	2020-12-30T10:30:00

	CustomerOptInAgreedOn (optional)
	DateTime
	The time the recipient agreed to receive a message via the Service Provider’s system, which is opt-in. When the recipient opt-out from the subscription before, this time informs the system that the recipient opt-in again.

When the recipient opt-out and this time is earlier than the opt-out time, the system throws the error with code 200 without sending the message.
	2020-05-10T01:00:00

	CallBackURL (optional)
	String
(Max: 1000)
	As soon as the status is updated, the system calls this URL to update the status to the Service Provider’s system.

strings: receipt number, status, error message, and respond value.

If you want to put security to verify the caller and to avoid the malicious call to the URL, we recommend you to put a verification code into the URL that you can verify: use our ‘VerificationCode API’ to generate and verify the code.

Use this example for assistance with creating a callbackurl.
	https://crmportalqa.lacourt.org/Appointment/MessageStatus?reminderId=0a37d3f7-9986-eb11-8137-005056a30fb9

	RequestResponseInText
(optional)
	Object
	When a response from the recipient for this message is required, you can specify the list of options from which a recipient can choose. Note that the text message must contain the response options and ask them to reply.

For example, “You have an upcoming appointment tomorrow. Please reply ‘Yes’ if you come, ‘No’ if you cannot come. Msg&data rates may apply.”

When the recipient replies, the system saves the response and time and updates the service provider via CallbackURL.
	

	
	<<The below are the properties of RequestResponseInText.>>

	
	RequireResponse
	Bool
	If it’s “True”, it informs the system clearly that the response is expected and the system handles the response.
	True

	
	ResponseValidUntil
	DateTime
	This is the date and time the response period is valid. When a response is received after this time, the system displays an error to the recipient without saving the response.
	2021-05-15T10:00:00

	
	RespondOptionList
	List
	List of multiple response options with RespondText and RespondValue properties.
You can include multiple text aliases for the same value.

- ResponText (string): The user-friendly text that a recipient can reply with. Please keep it short for them to type easily.
- RespondValue (string): The values that are stored in DB when a recipient selects this option.
	{"RespondText": "Yes", "RespondValue": "1"},
 {"RespondText": "No", "RespondValue": "2"},
{"RespondText": "Y", "RespondValue": "1"},
 {"RespondText": "N", "RespondValue": "2"},,
{"RespondText": "OK", "RespondValue": "1"}

Parameters in Body Example

{
 "ServiceId": 54,
 "TextMessage":"Your jury duty summon meeting is scheduled on 05/30/2021. Please text letter 'C' to confirm with your recipient of this message. This reply is mandatory. Msg&data rates may apply.",
 "MobileNumbers": ["12133107000","12099657121"],
 "MessageGroupId": "CTKS1245134",
 "MessageGroupTitle": "Case John Smith vs. People of LA",
 "RequestResponseInText": {
		"RequireResponse": "true",
		"ResponseValidUntil": "2021-05-15T10:00:00",
		"RespondOptionList": [
			{"RespondText": "Confirm", "RespondValue": "c"},
			{"RespondText": "cnfm", "RespondValue": "c"},
			{"RespondText": "C", "RespondValue": "c"},
			{"RespondText": "Deny", "RespondValue": "d"}
]
 }
}

[bookmark: _RETURNS]RETURNS
Returns immediate status and message information in a list if there are multiple recipients sent including ‘ReceiptNumber’ which is a unique value to track the message later.
	Property Name
	Type
	Description
	Example

	ReceiptNumber
	String
	Unique id assigned to this message.
	a-7457

	Status
	String
	The current status of the message. The initial status is “Pending” or “Sending”. The further status will be updated via CallbackURL or you can call ‘GetMessageQueue’ manually to check the status by passing MessageQueueId.

See the list of Statuses.
	Sending

	CreatedOn
	DateTime
	The time when the record was created.
	2020-03-23T13:21:22.3181776+00:00

	ErrorCode
	String
	Code of an error why this message failed to be sent. Empty if it doesn’t fail.

See the list of message queue errors.
	100

	ErrorMessage
	String
	The further detail of the error is an ad-hoc description specific to this message.
	The ‘To’ number 123-000-9999 is not a valid phone number.

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the return for any reason.
Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "customerOpInAgreedOn": null,
 "mobileNumber": "12099657121",
 "textMessage": "Your jury duty summon meeting is scheduled on 05/30/2021. Please text letter 'C' to confirm with your recipient of this message. This reply is mandatory. Msg&data rates may apply.",
 "requestResponseInText": {
 "respondOptionList": [
 {
 "respondText": "Confirm",
 "respondValue": "c"
 },
 {
 "respondText": "cnfm",
 "respondValue": "c"
 },
 {
 "respondText": "C",
 "respondValue": "c"
 },
 {
 "respondText": "Deny",
 "respondValue": "d"
 }
],
 "requireResponse": true,
 "responseValidUntil": "2021-05-15T10:00:00"
 },
 "messageQueueId": 665757,
 "clientId": "70f85e15-cd27-4aa8-85b4-0a7808f72362",
 "serviceId": 54,
 "messageGroupId": "CTKS1245134",
 "messageType": "TextMessage",
 "status": "Sending",
 "createdOn": "2020-10-21T11:31:38.1143928+00:00",
 "errorCode": null,
 "errorMessage": null,
 "callbackURL": null
 }
}

OPT-OUT
When calling SendTextMessage and a recipient has Opt-Out of a Service or Message Group, a response will return stating that the recipient has Opt-Out.
Response Example

{
 "successful": false,
 "warning": null,
 "error": {
 "code": "110",
 "description": "Opt Out",
 "message": "Recipient opt-out for this message group Id.",
 "httpStatusCode": 0
 },
 "value": null
}

[bookmark: _ACKNOWLEDGEMENT_RESPONSE_1][bookmark: _SendTextMessageInBulk][bookmark: SendTextMessageInBulk]SendTextMessageInBulk
Sends multiple text messages at once. The messages are queued and the system sends each message by calling ‘SendTextMessage’. You must use this operation instead of ‘SendTextMessage’ for efficient and reliable service if you send multiple messages in a short time that might exceed the call limit.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/SendTextMessageInBulk

Post Body
List of parameters that are used in and the same as the ‘SendTextMessage’ operation. Please see ‘SendTextMessage Parameters’ for the details of the parameter.
Parameters in Body Example

[
	{
 "ServiceId": 32,
 "TextMessage":"LA Court - You have an upcoming Court appointment at 10:00 AM on 10/19/2020.",
 "MobileNumbers": ["12099657121"],
 "MessageGroupId":"AP_d86bf5e9-34fsdfdf2-ea11-8110",
 "MessageGroupTitle":"Online English - Appointment Online - Get Assistance from Home #1 appointment at 10/19/20 01:30 PM"
	},
	{
 "ServiceId": 32,
 "TextMessage":"LA Court - You have an upcoming payment for a traffic ticket due by 10/19/2020.",
 "MobileNumbers": ["12099657121"],
 "MessageGroupId":"TP_d86bf5e42349-34f2-ea11-8110",
 "MessageGroupTitle":"Traffic Payment Plan #Abc342"
	},	
 {
 "ServiceId": 32,
 "TextMessage":"LA Court - You have an upcoming Court appointment at 10:00 AM on 10/30/2020.",
 "MobileNumber": ["12099657121"],
 "MessageGroupId":"AP_d86bf5e9-34f2-ea11-8110",
 "MessageGroupTitle":" English - Appointment at 10/19/20 01:30 PM"
}
]

[bookmark: _RETURNS_3]RETURNS
Returns the Id of Bulk MessageQueue. Individual MessageQueueId is generated when the system sends the queued message and can be read by calling ‘SearchMessageQueue’.
	Property Name
	Type
	Description
	Example

	BulkReceiptNumber
	String
	Unique id for the Bulk Message Queue record.
	b-a-7480

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": b-a-392
 }
}

[bookmark: _SendEmailMessage_1][bookmark: SendTextMessageInBulkV2]SendTextMessageInBulk V2
Sends multiple text messages at once using ‘TextMessageRequests’. The messages are queued and the system sends each message by calling ‘SendTextMessage’. You must use this operation instead of ‘SendTextMessage’ for efficient and reliable service if you send multiple messages in a short time that might exceed the call limit.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/v2/SendTextMessageInBulk

Post Body
· Name: “bulkTextMessageRequest”
· Type: BulkTextlMessageRequest
	Property Name
	Type
	Description

	<<The below are the properties of BulkTextMessageRequest >>

	‘TextMessageRequest’
	List<TextMessageRequest>
	List of parameters that are used in and the same as the parameter used in ‘SendTextMessage’ operation. Please see ‘SendTextMessage Parameters’ for the details of the parameter.

Parameters in Body Example

{
 "TextMessageRequests": [
 {
 "ServiceId": 32,
 "TextMessage": "LA Court - You have an upcoming Court appointment at 10:00 AM on 10/19/2020.",
 "MobileNumbers": [
 "12099657121"
],
 "MessageGroupId": "AP-Ada434d-6sd232=-asdad2342",
 "MEssageGroupTitle": "ProcessLog04262022",
 "RequestResponseInText": {
 "RequireResponse": "true",
 "ResponseValidUntil": "2022-07-15T10:00:00",
 "RespondOptionList": [
 {
 "RespondText": "dasd",
 "RespondValue": "dasd"
 },
 {
 "RespondText": "cnfm",
 "RespondValue": "c"
 },
 {
 "RespondText": "C",
 "RespondValue": "c"
 },
 {
 "RespondText": "Deny",
 "RespondValue": "d"
 }
]
 }
 },
	 {
"ServiceId": 32,
 "TextMessage": "LA Court - You have an upcoming Court appointment at 11:00 AM on 10/19/2020.",
 "MobileNumbers": [
 "12099657121"
],
 "MessageGroupId": "AP-Ada434d-6sd232=-asdad2342",
 "MEssageGroupTitle": "ProcessLog04262022"
 }
]
}

RETURNS
Returns the Id of Bulk MessageQueue. Individual MessageQueueId is generated when the system sends the queued message and can be read by calling ‘SearchMessageQueue’.
	Property Name
	Type
	Description
	Example

	BulkReceiptNumber
	String
	Unique id for the Bulk Message Queue record.
	b-a-7480

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": b-a-392
 }
}

[bookmark: SendEmailMessage]
SendEmailMessage
Sends an email message to a recipient.
This operation has a limit on the number of times you can call it. Refer to Call Limit Policy for more details.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/SendEmailMessage

[bookmark: SendEmailMessage_Parameters]Post Body

· Name: “emailMessageRequest”
· Type: EmailMessageRequest

	Property Name
	Type
	Description
	Example

	<<The below are the properties of EmailMessageRequest>>

	ServiceId
	Integer
	The registered service under which this message is sent. Service is the default group of messages, called a subscription that the recipient can Opt-in or out of.

The Service Provider can manage the services on the Service Provider website, and get this id.
	1

	ReplyToEmail
(optional)
	String
(Max: 200)
	If the Service Provider wants to specify a certain email address to reply to instead of the From Email address, the Service Provider can use this property.

See How to use Reply-To email for more information.
	CourtNotifyComplaints@lacourt.org

	FriendlyReplyToName
(optional)
	String
(Max: 200)
	Friendly reply to name for recipients to reply to.
	Court Appointments Help

	ToEmails
	List
	This is the recipient’s email address. ToEmails can have multiple email addresses in a list.
	[“Mlee@lacourt.org”,
“DVoong @lacourt.org”]

	EmailSubject
	String
(Max: 1000)
	Email subject.
	Court Notify Test

	FromEmail (optional)
	String
(Max: 200)
	Service Provider can specify their “FromEmail” like “occnotify@occourt.org” by registering their domain with Court Notify. Please see the “Custom From Email” section.
	OCCNotify@Occourt.org

	FriendlyFromName (optional)
	String
(Max: 200)
	This is the friendly-from name that shows the recipient what the Service Provider service wants to be identified as.
	Orange County Notify

	EmailBody
	String

	Email body message. It supports HTML format.
	Welcome to Court Notify.

This is a testing email message.
<p>You have an upcoming appointment.</p>

	MessageGroupId
(optional)
	String
(Max: 50)
	Unique identifier in the string to group messages under service to give recipients to Opt-In or Out. If MessageGroup is not specified, ‘Service’ is used to group messages to Opt-in or Out.

A case number is a common example of this.

This id must be unique in the system, we recommend you append the prefix of your service with a few characters, such as “JURY”, “TPP”, and “AT”.
	JURY-CTKS1245134

	MessageGroupTitle (optional)
	String
(Max: 200)
	Recipient-friendly text for the MessageGroupId.
This text displays to the recipient.
	Case John Smith vs. People of LA

	MessageGroupExpireOn (optional)
	DateTime
	The expiration date of this Message Group (specified by MessageGroupId) is used to decide whether to show this MessageGroup to the recipient. Once expired, this message group does not display to a recipient when they want to see the list of subscriptions they are opt-in or out of.

By default, 2 months away from the current time is set as the expiration date.
	2020-12-30T10:30:00

	CustomerOptInAgreedOn (optional)
	DateTime
	The time the recipient agreed to receive a message via the Service Provider’s system, which is opt-in. When the recipient opt-out from the subscription before, this time informs the system that the recipient opt-in again.

When the recipient opt-out and this time is earlier than the opt-out time, the system throws the error with code 200 without sending the message.
	2020-05-30T12:00:00.0000000-07:00

	CallBackURL (optional)
	String
(Max: 1000)
	As soon as the status is updated, the system calls this URL to update the status to the Service Provider’s system.

Status information is passed via query strings: receipt number, status, error message, and respond value.

If you want to put security to verify the caller and to avoid the malicious call to the URL, we recommend you to put a verification code into the URL that you can verify: use our ‘VerificationCode API’ to generate and verify the code.

Use this example for assistance with creating a callback URL.
	https://crmportalqa.lacourt.org/Appointment/MessageStatus?reminderId=0a37d3f7-9986-eb11-8137-005056a30fb9

	HideUnsubscribe
(optional)
	Bool
	The system includes an ‘Unsubscribe’ message and a link to the page where the recipient can opt-out by default. This value allows the service provider to specify NOT to include it for any special reason bypassing “True”.
	True

	[bookmark: _Hlk54178998]RequestResponseInEmail (optional)
	Object
	When a response from the recipient for this message is required, you can specify the list of options that a recipient can choose in this object.

When the recipient replies, the system saves the response and time and updates the service provider via CallbackURL.
	

	
	<<The below are the properties of RequestResponseInEmail.>>

	
	RequireResponse
	Bool
	If it’s “True”, it informs the system clearly that the response is expected and the system handles the response.
	True

	
	ResponseValidUntil
	DateTime
	This is the date and time the response period is valid. When a response is received after this time, the system displays an error to the Service Provider without saving the response.
	2021-05-15T10:00:00

	
	RespondOptionList
	List
	List of multiple response options with RespondLinkLabel and RespondValue properties.

- RespondLinkLabel (string): The user-friendly statement that displays to the recipient. This can be long text if needed.
- RespondValue (string): The values that are stored in DB when a recipient selects this option.
	{"RespondLinkLabel": "I hereby confirm a receipt of this message",
"RespondValue": "C"}

	
	RequestingMessage (optional)
	String
(Max: 4000)
	This message displays first to the recipient before the response option starts. It can be an instruction or acknowledgment or disclaimer message regarding the response.
	Please select one of the following options for your case by 10/20/2020. The failure of this response will result.

	
	ResponsePosition (optional)
	Byte
	This specifies the location of the response options in the email body.

0: Bottom of the email body.
1: Top of the email body.
2: Custom location; when you want to put the response options in the middle of the email body. Put the string specified in the next parameter,
CustomPositionWithResponsePositionKeyWord, anywhere in the email body text.
	2

	
	CustomResponsePositionWithResponseKeyWord (optional)
	String
(Max: 20)
	The placeholder in the email message body will be replaced by the generated response options.

Use a specific syntax that does not conflict with any text in the email body. The recommended format is “[@PlaceHolderName].”
	[@ResponseOptionGoesHere]

	EmailAttachments (optional)
	List
	Users can attach files to send with the emails. For more information, look at Email Attachments.
	

	
	<<The below are the properties of EmailAttachments.>>

	
	FullName
	String
(Max: 500)
	Name of the attachment file with the extension.
	DataAnalysisOfUsers.csv

	
	Data
	String
	This is the Base64String file data.
	R0lGODlhAQABAHcAACH5BAEAAAAALAAAAAABAAEAh/8A/////wAAA…

	
	MetaData
	Object
	The object with the metadata needed describes what type of file extension is being used.
	

	
	<<The below are the properties of MetaData.>>

	
	ContentType
	String
	List the MIME types here. For more information, you can click on this link for Common Mime types.
	text/csv

	
	ContentEncoding
	String
	The string character encoding to use for string/character-based MIME types.
	us-ASCII

Parameters in Body Example

{
 "ServiceId": 1,
 "ToEmail": "mlee@lacourt.org",
 "EmailSubject": "Your upcoming court appearance appointment",
 "EmailBody": "<p>You have upcoming court appearance on 05/30/20 @ 10:00 am onsite at Stanley Mosk..</p> <div>ResponsePosition</div> <div><p>Duration: 1 Hours</p><p>Location: Stanley Mosk Courthouse</p><p>Room: 100</p><p>Address: 111 N. St, Los Angeles, CA 90012</p><p>Location Map: https://goo.gl/maps/8LExbhkEypTGkqsNA</p></div>",
 "RequestResponseInEmail": {
 "RequireResponse": "True",
 "ResponseValidUntil": "2022-05-30T13:21:00.0000000-07:00",
 "RespondOptionList": [
 {
 "RespondLinkLabel": "I hereby confirm a receipt of this messsage",
 "RespondValue": "Confirm"
 },
 {
 "RespondLinkLabel": "I hereby deny a receipt of this messsage",
 "RespondValue": "Deny"
 }
],
 "ResponsePosition": 0,
 "RequestingMessage": "Please select the button below to confirm you have received this email.",
 "CustomResponsePositionWithResponseKeyWord": "[@ResponseOptionGoesHere]"
 },
 "EmailAttachments": [
 {
 "FullName": "image.png",
 "Data": "R0lGODlhAQABAHcAACH5BAEAAAAALAAAAAABAAEAh/8A/////wAAgEAAMEBAA7",
 "MetaData": {
 "ContentType": "image/png",
 "ContentEncoding": "us-ascii"
 }}
]
}

[bookmark: _RETURNS_1]RETURNS
Returns message queue model data related to email.
	Property Name
	Type
	Description
	Example

	ReceiptNumber
	String
	Unique id assigned to this message.
	a-7457

	Status
	String
	The current status of the message. The initial status is “Pending” or “Sending”. The further status will be updated via CallbackURL or you can call ‘GetMessageQueue’ manually to check the status by passing MessageQueueId.

See the list of Status.
	Sent

	CreatedOn
	DateTime
	The time when the record was created.
	2020-01-31T15:43:14.8408704+00:00

	ErrorCode
	String
	Unique id of error that this message has not been sent.

See the list of message queue errors.
	107

	ErrorMessage
	String
	The further detail of the error is an ad-hoc description specific to this message.

When this email is marked “invalid (ErrorCode =107),” this message displays the detail reason why marked invalid from the recipient email service such as ‘Gmail’ or ‘Yahoo.’
	The required field ‘ResponseValidUntil’ is missing.

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the Return for any reason.

[bookmark: _ACKNOWLEDGEMENT_RESPONSE]Response Example

{
 "successful": true,
 "error": null,
 "value": {
 "customerOpInAgreedOn": null,
 "fromEmail": "No-ReplyCourtNotify@lacourt.org",
 "toEmail": "mlee@lacourt.org",
 "emailSubject": "Your upcoming court appearance appointment",
 "emailBody": "<p>You have upcoming court appearance on 05/30/20 @ 10:00 am onsite at Stanley Mosk..</p> <div><div>\r\n Please select the button below to confirm you have received this email.
\r\n <table cellspacing='10'><tr style='background-color:#0077cc'><td style='padding5px;padding-left:20px;padding-right:20px;'>I hereby confirm a receipt of this messsage</td></tr></table >\r\n </div></div> <div><p>Duration: 1 Hours</p><p>Location: Stanley Mosk Courthouse</p><p>Room: 100</p><p>Address: 111 N. St, Los Angeles, CA 90012</p><p>Location Map: https://goo.gl/maps/8LExbhkEypTGkqsNA</p></div><hr />Click to unsubscribe from Admin Test Service. This link is valid until 5/27/2021 11:11:21 AM.",
 "hideUnsubscribe": false,
 "requestResponseInEmail": {
 "respondOptionList": [
 {
 "respondLinkLabel": "I hereby confirm a receipt of this messsage",
 "respondValue": "Confirm"
 }
],
 "requestingMessage": "Please select the button below to confirm you have received this email.",
 "responsePosition": 2,
 "customResponsePositionWithResponseKeyWord": "ResponsePosition",
 "requireResponse": true,
 "responseValidUntil": "2020-05-30T20:21:00+00:00"
 },
 "emailAttachments":[
 {
 "fullName": "image.png",
 "metaData": {
 "contentType": "image/png",
 "contentEncoding": "us-ascii"
 }}],
 "messageQueueId": 92767,
 "clientId": "fab2897a-e2ad-4fb3-b76b-d0888a00a392",
 "serviceId": 1,
 "messageGroupId": null,
 "messageType": "Email",
 "status": "Sent",
 "createdOn": "2020-05-27T11:11:21.8924843+00:00",
 "errorCode": null,
 "errorMessage": null,
 "callbackURL": null
 }
}

[bookmark: _SendEmailMessageInBulk]OPT-OUT
When calling SendEmailMessage and a recipient has Opt-Out of a Service or Message Group, a response will return stating that the recipient has Opt-Out.
Response Example

{
 "successful": false,
 "warning": null,
 "error": {
 "code": "110",
 "description": "Opt Out",
 "message": "Recipient opt-out for this message group Id.",
 "httpStatusCode": 0
 },
 "value": null
}

[bookmark: SendEmailMessageInBulk]SendEmailMessageInBulk
Sends multiple email messages at once. The messages are queued and the system sends each message by calling ‘SendEmailMessage’. You must use this operation instead of ‘SendEmailMessage’ for efficient and reliable service if you send multiple messages in a short time that might exceed the call limit.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/SendEmailMessageInBulk

Post Body
List of parameters that are used in and the same as the parameter used in ‘SendEmailMessage’ operation. Please see ‘SendEmailMessage Parameters’ for the details of the parameter.
Parameters in Body Example

[
	{
		"ServiceId": 32,
		"ToEmails": ["mlee@lacourt.org"],
		"EmailSubject": "Appointment Reminder for upcoming Court appointment at 10/19/20 03:15 PM",
		"EmailBody": "Court Appointment"
	},
 	{
		"ServiceId": 32,
		"ToEmails": ["mlee@lacourt.org"],
		"EmailSubject": "Appointment Reminder for upcoming Court appointment at 10/19/20 03:15 PM",
		"EmailBody": "Court Appointment"
	},
 {
		"ServiceId": 32,
		"ToEmails": ["mlee@lacourt.org"],
		"EmailSubject": "Appointment Reminder for upcoming Court appointment at 10/19/20 03:15 PM",
		"EmailBody": "Court Appointment"
	}
]

[bookmark: _RETURNS_4]RETURNS
Returns the Id of Bulk MessageQueue. Individual MessageQueueId is generated when the system sends the queued message and can be read by calling ‘SearchMessageQueue.
	Property Name
	Type
	Description
	Example

	BulkReceiptNumber
	String
	Unique id for the Bulk Message Queue record.
	b-a-7481

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": “b-a-115”
 }
}

[bookmark: SendEmailMessageInBulkV2]SendEmailMessageInBulk V2
Sends multiple email messages at once using ‘EmailMessageRequests’ and ‘EmailAttachments’. The messages are queued and the system sends each message by calling ‘SendEmailMessage’. You must use this operation instead of ‘SendEmailMessage’ for efficient and reliable service if you send multiple messages in a short time that might exceed the call limit.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/v2/SendEmailMessageInBulk

Post Body
· Name: “bulkEmailMessageRequest”
· Type: BulkEmaillMessageRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of BulkEmailtMessageRequest >>
	

	‘emailMessageRequest’
	List<EmailMessageRequest>
	List of parameters that are used in and the same as the parameter used in ‘SendEmailMessage’ operation. Please see ‘SendEmailMessage Parameters’ for the details of the parameter.
	

	‘emailMessageAttachment’
	List< EmailMessageAttachment>
	
	

	
	<<The below are the properties of EmailMessageAttachment >>
	

	
	FullName
	string
	File name with extension
	Test1.txt

	
	Data
	string
	Base64-encoded string of the file's contents.
	TVVMTiB0byBkYScgJiN4MjEzMzsgJiN4MjYzRDsgJiN4MjYzRTsgJi….

	
	DataBinary (Optional)
	byte[]
	GZipped, binary of the file's contents.
	

	
	StorageType (Optional)
	string
	Type type of data being stored: 'Base64' or 'GZip'. If 'GZip', 'DataBinary' must be set. If 'Base64', 'Data' must be set.
	Base64

	
	MetaData
	EmailMessageAttachmentMetaData
	Extra info about the file that's required, such as ContentType (MIME type) and Encoding (character-encoding type).
	

	<<The below are the properties of EmailMessageAttachmentMetaData >>
	

	
	
	ContentType
	string
	The MIME type of the file. E.g., application/pdf, text/plain, text/csv, image/png, etc.
	text/plain

	
	
	ContentEncoding
	string
	The string character encoding to use for string/character-based MIME types. Use the web name; accceptable encodings are as follows: utf-7, utf-8, utf-16 (for Unicode), utf-32, us-ascii (for ASCII/binary content).
	utf-8

Parameters in Body Example

{
 "EmailMessageRequests": [
 {
 "ServiceId": 32,
 "ToEmails": [
 "courtnotifytestuser1@gmail.com"
],
 "EmailSubject": "Court Appointment on 06/30/2022 at 10:00 AM",
 "FriendlyFromName": "Deploy D",
 "EmailBody": "<p>Good Morning Applicant</p><p>You hae a Court Appointment on 06/30/2022 at 10:00 AM. Please confirm your appointment below. Thank you</p>",
 "MessageGroupId": "DeployD06232022",
 "MessageGrouptitle": "TestingDeployD07112022",
 "HideUnsubscribe": 0,
 "RequestResponseInEmail": {
 "RequireResponse": "True",
 "ResponseValidUntil": "2023-05-30T13:21:00.0000000-07:00",
 "RespondOptionList": [
 {
 "RespondLinkLabel": "I hereby confirm a receipt of this messsage",
 "RespondValue": "Confirm"
 },
 {
 "RespondLinkLabel": "I hereby deny a receipt of this messsage",
 "RespondValue": "Deny"
 }
],
 "ResponsePosition": 0,
 "RequestingMessage": "Please select the button below to confirm you have received this email.",
 "CustomResponsePositionWithResponseKeyWord": "[@]"
 }
 }
],
 "EmailAttachments": [
 {
 "FullName": "Test1.txt",
 "Data": "TVVMTiB0byBkYScgJiN4MjEzMzsgJiN4MjYzRDsgJiN4MjYzRTsgJiN4MjExNTsgJiN4MjdCOTsgJiN4Mjc5QTsgJiN4MjYxRDsNCg0KTVVMTiB0byBkYScg4oSzIOKYvSDimL4g4oSVIOKeuSDinpog4pidDQoNCiYjeDI3Qjk7ICYjeDI3OUE7ICYjeDI2M0Q7ICYjeDI2M0U7ICYjeDI2MUQ7DQoNCg0KJDEyLDI2MS41NyBYIDAuMzUgPSA0MjkxLjU0OTUNCg0KT0xEIFR3aWxpbyBEZXYgQWNjb3VudCBTSUQ6IEFDYjdjOWM0ZjNjODBiOWIwNmI1NjM5MDliZjIxOTkwMmENCkFDMThkMWJkN2UyNDdmYjc2YjE5NDZlOGExMWM5NWFjZjkNCg0K",
 "MetaData": {
 "ContentType": "text/plain",
 "ContentEncoding": "utf-8"
 }
 }
]
}

RETURNS
Returns the Id of Bulk MessageQueue. Individual MessageQueueId is generated when the system sends the queued message and can be read by calling ‘SearchMessageQueue.
	Property Name
	Type
	Description
	Example

	BulkReceiptNumber
	String
	Unique id for the Bulk Message Queue record.
	b-a-7481

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": “b-a-115”
 }
}

[bookmark: _GetMessageQueue_1]GetMessageQueue
Get a specific MessageQueue object to check the status of the original message queued.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetMessageQueue[?receiptNumber]

PARAMETERS
	Name
	Type
	Description
	Example

	ReceiptNumber
	String
	Unique id assigned to this message.
	a-7457

[bookmark: _RETURNS_2]RETURNS
Returns data from MessageQueue, EmailMessage, and TextMessage.
·
	Property Name
	Type
	Description
	Example

	<<>>

	MessageType
	String
	The type of message whether it would be a TextMessage or Email. See the list of message types.
	Email

	MessageTypeEnum
	Integer
	The Id that has the type of message name.
	2

	Status
	String
	The current status of the message. The system sends text messages async. The initial status is “Pending” or “Sending”. The further status will be updated via CallbackURL.

See the list of Status.
	Sent

	StatusEnum
	Integer
	The numeric value of Status.

See the list of Status.
	3

	ErrorCode
	String
	Unique id of error that this message has not been sent.

See the list of message queue errors.
	100

	ErrorMessage
	String
	A generic error message stating that identifies what was wrong.
	Invalid Phone Number

	Note
	String
	Any note that pertains to the Message Queue record.
	This record will be removed later.

	CallBackURL
	String
	As soon as the status is updated, the system calls this URL to update the status to the Service Provider’s system.

Status information is passed via query strings: message Id, status, and error message.

If you want to put security to verify the caller and to avoid the malicious call to the URL, we recommend you to put a verification code into the URL that you can verify: use our ‘VerificationCode API’ to generate and verify the code.
	https://jury.lacourt.org/JuryNotificationApp1/HandleTextMsg?v=abce-dsec-123a-3gse&MessageId=1&status=3

	CallBackCalledOn
	DateTime
	This is the date and time the CallBackURL was called.
	2020-10-14 15:53:10.883

	TextMessageInfo
	Object
	Contains information related to Text Messages. See Parameters for SendTextMessage.
	

	EmailMessageInfo
	Object
	Contains information related to Email Messages. See Parameters for SendEmailMessage.
	

	ServiceInfo
	Object
	The ServiceInfo. Is an object that has attributes related to the Services associated with the Message Queue Id searched.
	

	
	<<The below are the properties of ServiceInfo.>>

	
	ClientAppId
	Integer
	The ID of the Owner of the Service.
	2

	
	Abbr
	String
	Unique abbreviation of the Service title.
	AP

	
	Title
	String
	The name of the Service.
	Appointment

	
	Description
	String
	Description of what the service is.
	This service is used to create appointments for recipients.

	
	DisclaimerForPublic
	String
	The generic message that can be used to show to the public when a recipient Opt-In for a message.
	Welcome to Court Notify, You will be receiving messages from different applications. Msg&data rates may apply.

	
	Status
	Bool
	Indicate if this service is active or not.

1: Active Service
0: Inactive Service
	1

	
	CreatedOn
	DateTime
	The date and time the Service was created.
	2020-10-14 15:53:10.883

	
	UpdatedOn
	DateTime
	The date and time the Service was updated on.
	2020-10-16 15:53:10.883

	
	VerificationCodes
	String
	This is the Verification Code that can be used to associate with the Service.
	3f6a4f54-ce4d-46d3-a9f6-0ec081a852d3

	MessageGroupInfo
	Object
	Contains information related to Message Group Info.
	

	
	<<The below are the properties of MessageInfo.>>

	
	GroupId
	String
	ID to sub-group messages under the service. A case number is a common example of this.
	CTKS1245134.

	
	Title
	String
	Recipient-friendly text for MessageGroupId.

This must be used when sending with a MessageGroupId. Our Text Messaging Services uses the title to display to the recipient when they receive text messages.
	Case John Smith vs. People of LA

	
	ClientAppId
	Integer
	The ID of the Owner of the Service.
	2

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	CreatedOn
	DateTime
	The date and time the Service was created.
	2020-10-14 15:53:10.883

	
	Status
	Bool
	Indicate if this MessageGroup is active or not.

1: Active MessageGroup
0: Inactive MessageGroup
	1

	
	ActivatedOn
	DateTime
	The date and time the Message Group was activated.
	2020-10-14 15:53:10.883

	
	DeactivatedOn
	DateTime
	The date and time the Message Group was deactivated.
	2020-10-15 15:53:10.883

	
	ExpireOn
	DateTime
	The date and time the Message Group will be expired and once expired it will change the status to inactive.

If an SP sends a new message within an expired MessageGroup, ExpireOn will be updated with an additional month.
	2020-10-14 15:53:10.883

 Response Example

"successful": true,
 "warning": null,
 "error": null,
 "value": {
 "messageTypeEnum": 2,
 "statusEnum": 3,
 "statusUpdatedOn": "2020-10-19T14:16:30.52+00:00",
 "sentOn": null,
 "callbackCalledOn": null,
 "note": null,
 "responseValue": null,
 "respondOn": null,
 "textMessageInfo": null,
 "emailMessageInfo": {
 "fromEmail": "No-ReplyCourtNotify@lacourt.org",
 "recipientEmail": "mlee@lacourt.org",
 "emailSubject": "Appointment Reminder for upcoming Court appointment at 10/19/20 03:15 PM",
 "emailBody": "Court Appointment is scheduled on 10/19/2020 at 3:15 PM.

Please visit the following web page to view the detail or cancel the appointment:<br
 "hideUnsubscribe": false,
 "requestResponseInEmail": null
 },
 "serviceInfo": {
 "id": 3,
 "clientAppId": 2,
 "abbr": "AP",
 "title": "Appointment",
 "description": "Users can schedule appointments before visting the court",
 "disclaimerForPublic": null,
 "status": true,
 "createdOn": "2020-02-18T21:03:22.767",
 "updatedOn": "2020-02-18T21:03:22.77",
 "verificationCodes": null,
 "servicePhones": null,
 "serviceEmails": null,
 "messageGroups": null,
 "messageQueues": null
 },
 "messageGroupInfo": {
 "id": 62398,
 "groupId": "AP_3966e434-5012-eb11-811f-005056a3a54a",
 "title": "Court appointment at 10/19/20 03:15 PM",
 "clientAppId": 2,

 "clientAppId": 2,
"serviceId": 3,
 "createdOn": "2020-10-19T21:15:35.15",
 "status": true,
 "activatedOn": "2020-10-19T21:15:35.15",
 "deactivatedOn": null,
 "expireOn": "2020-10-19T22:30:00",
 "clientApp": null,
 "service": null,
 "messageGroupPhones": null,
 "messageGroupEmails": null,
 "messageQueues": null
 },
 "messageQueueId": 655177,
 "clientId": null,
 "serviceId": 3,
 "messageGroupId": "AP_3966e434-5012-eb11-811f-005056a3a54a",
 "messageType": "Email",
 "status": "Sent",
 "createdOn": "2020-10-19T14:16:28.987+00:00",
 "errorCode": null,
 "errorMessage": null,
 "callbackURL": null
 }
}

[bookmark: _GetMessageQueueLog_1][bookmark: _SearchMessageQueue]SearchMessageQueue
Retrieve or search the list of messages queued by specifying the criteria.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/SearchMessageQueue

Post Body
· Name: “messageQueueRequest”
· Type: MessageQueueRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of MessageQueueRequest >>

	FromDate
	DateTime
	Start date of a date range to search against the time when a message is queued.
	2020-01-01

	ToDate
	DateTime
	The end date of a date range to search against the time when a message is queued.
	2020-02-28

	ServiceId (optional)
	Integer
	Filter by a service.
No filtering is not specified.
	1

	MessageType (optional)
	Integer
	Filter by MessageType to filter Email or Text messages or both if the value is not specified.

See the list of message types.
	2

	Status (optional)
	Integer
	Filter by a specific status of the Message Queue.

See the list of Status.
	3

	MessageGroupId (optional)
	String
	Filter by a Message Group

No filtering is not specified.
	TPP-CAD245BDI

 Parameters in Body Example

{
	"FromDate":"2020-01-20",
	"ToDate": "2020-01-30",
	"ServiceId": 1,
	"MessageType": 2,
	"Status": 3
}

RETURNS
Returns the list of records of MessageQueue which is defined in the ‘GetMessageQueue’ operation.
Response Example

{
 "successful": true,
 "error": null,
 "value": [
 {
 "messageQueueId": 65,
 "clientAppId": 0,
 "serviceId": 1,
 "messageType": 2,
 "messageTypeEnum": 2,
 "messageGroupId": 0,
 "status": 3,
 "statusEnum": 3,
 "statusUpdatedOn": "2020-01-29T09:58:20.21+00:00",
 "sentOn": "2020-01-29T09:58:20.217+00:00",
 "errorMessage": null,
 "errorCode": null,
 "callbackURL": null,
 "callbackCalledOn": null,
 "createdOn": "2020-01-29T09:58:17.96+00:00",
 "note": null,
 "textMessageInfo": null,
 "emailMessageInfo": {
 "emailMessageId": 1,
 "receiptNumber": “a-3265”,
 "emailId": 1,
 "FromEmailUsed": "mgonzalez@lacourt.org",
 "emailSubject": "Test subject from VS APIClientCoreTestsDev",
 "emailBody": "Test body from VS APIClientCoreTestsDev",
 "messageQueueInfo": null
 },
 "serviceInfo": null,
 "messageGroupInfo": null
 },
 {
 "messageQueueId": 109,
 "clientAppId": 0,
 "serviceId": 1,
 "messageType": 2,
 "messageTypeEnum": 2,
 "messageGroupId": 0,
 "status": 3,
 "statusEnum": 3,
 "statusUpdatedOn": "2020-01-29T11:54:52.867+00:00",
 "sentOn": "2020-01-29T11:54:52.88+00:00",
 "errorMessage": null,
 "errorCode": null,

 "emailMessageId": 25,
 "messageQueueId": 109,
 "emailId": 2,
 "emailSender": "no-replycourtnotify@lacourt.org",
 "emailSubject": "<h1>This my header</h1>",
 "emailBody": "<h1>This is a testing</h1>",
 "messageQueueInfo": null
 },
 "serviceInfo": null,
 "messageGroupInfo": null
 }
]
}

 "createdOn": "2020-01-29T11:54:52.443+00:00",
 "note": null,
 "textMessageInfo": null,
 "emailMessageInfo": {
 "emailMessageId": 25,
 "messageQueueId": 109,
 "emailId": 2,
 "FromEmailUsed": "no-replycourtnotify@lacourt.org",
 "emailSubject": "<h1>This my header</h1>",
 "emailBody": "<h1>This is a testing</h1>",
 "messageQueueInfo": null
 },
 "serviceInfo": null,
 "messageGroupInfo": null
 }
]
}

[bookmark: _GetPhoneOptInOutInfo_1][bookmark: _GetPhoneOptInOut]GetPhoneOptInOut
Retrieves the complete information of a mobile number whether the number is valid. This operation should not be called multiple times to retrieve multiple mobile numbers. Recommended use it for a website to check the status of one mobile number.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetPhoneOptInOut[?MobileNumber]

PARAMETERS
	Property Name
	Type
	Description
	Example

	MobileNumber
	String
	Recipient phone number
	12138300144

RETURNS
Returns value from Phone, Services, and MessageGroups.
	Property Name
	Type
	Description
	Example

	Id
	Integer
	Identifier of a Phone record.
	1

	Invalid
	Bool
	1: Phone number is invalid
0: Phone number is valid
Null
	1

	InvalidCheckedOn
	DateTime
	The date and time that the Phone number became invalid.
	2020-10-14 15:53:10.883

	InvalidReason
	Integer
	The different reasons why this phone number is considered invalid.

Please see the list of Phone Invalid Reasons.
	3

	ServiceInfo
	Object
	The ServiceInfo. Is an object that has attributes related to the Services associated with the Message Queue Id searched.
	

	
	<<The below are the properties of ServiceInfo.>>

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	Status
	Bool
	0: Inactive (False)
1: Active (True)
	True

	
	IsOptIn
	Bool
	0: Opt-Out (False)
1: Opt-In (True)
	True

	
	OptInType
	Integer
	1: Client App Text Message – Service Providers who manage their services.
2: Recipient Text Message – This is related to the recipient’ actions.
3: Website
	1

	
	OptInOn
	DateTime
	The date and time the Service was Opt-In to.
	2020-01-30T13:29:06.75+00:00

	
	OptOutOn
	DateTime
	The date and time the Service was Opt-Out on.
	2020-02-30T13:29:06.75+00:00

	MessageGroupInfo
	Object
	Contains information related to Message Group Info.
	

	
	<<The below are the properties of MessageInfo.>>

	
	GroupId
	String
	Id to sub-group messages under the service. A case number is a common example of this.
	CTKS1245134

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	Status
	Bool
	0: Inactive (False)
1: Active (True)
	True

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	ActivatedOn
	DateTime
	The date and time the Message Group was activated.
	2020-10-14 15:53:10.883

	
	DeactivatedOn
	DateTime
	The date and time the Message Group was deactivated.
	2020-10-15 15:53:10.883

	
	ExpireOn
	DateTime
	The date and time the Message Group will be expired and once expired it will change the status to inactive.
	2020-10-14 15:53:10.883

	
	IsOptIn
	Bool
	0: Opt-Out (False)
1: Opt-In (True)
	True

	
	OptInType
	Integer
	1: Client App Text Message – Service Providers who manage their services.
2: Recipient Text Message – This is related to the recipients’ actions.
3: Website
	1

	
	OptInOn
	DateTime
	The date and time the Service was Opt-In to.
	2020-01-30T13:29:06.75+00:00

	
	OptOutOn
	DateTime
	The date and time the Service was Opt-Out on.
	2020-02-30T13:29:06.75+00:00

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "errorCode": null,
 "errorMessage": null,
 "phoneInfo": {
 "id": 10,
 "mobileNumber": "12099657121",
 "invalid": false,
 "invalidCheckedOn": null,
 "invalidReason": null,
 },
 "emailInfo": null,
 "services": [
 {
 "serviceId": 1,
 "status": true,
 "isOptIn": true,
 "optInType": "ClientAppTextMessage",
 "optInOn": "2020-01-30T13:29:06.75+00:00",
 "optOutType": "",
 "optOutOn": null
 }
],
 "messageGroups": [
 {
 "groupId": "NewGroupId",
 "serviceId": 1,
 "status": false,
 "activatedOn": "2020-01-30T10:50:20.483+00:00",
 "deactivatedOn": "2020-01-30T11:54:51.513+00:00",
 "isOptIn": true,
 "optInType": "ClientAppTextMessage",
 "optInOn": "2020-01-30T13:29:06.8+00:00",
 "optOutType": "",
 "optOutOn": null
 },
{
 "groupId": "Testing_Group_2",
 "serviceId": 1,
 "status": true,
 "activatedOn": "2020-01-30T13:29:17.327+00:00",
 "deactivatedOn": null,
 "isOptIn": true,
 "optInType": "ClientAppTextMessage",
 "optInOn": "2020-01-30T13:29:17.343+00:00",
 "optOutType": "",
 "optOutOn": null
 }
]
 }
}

[bookmark: _GetEmailOptInOutInfo_1][bookmark: _GetEmailOptInOut]GetEmailOptInOut
Retrieves information regarding if the email is invalid, services, and message groups that are associated with the email. This operation should not be called multiple times to retrieve multiple email addresses. Recommended use it for a website to check the status of one email address.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetEmailOptInOut[?emailAddress]

PARAMETERS
	Property Name
	Type
	Description
	Example

	EmailAddress
	String
	Recipient Email Address
	mlee@lacourt.org

RETURNS
Return Email with related Services and Message Groups.
	Property Name
	Type
	Description
	Example

	Id
	Integer
	Identifier of the Email Id.
	1

	Invalid
	Bool
	1: Email address is invalid
0: Email address is valid
Null
	1

	InvalidCheckedOn
	DateTime
	The date and time that the Email became invalid.
	2020-10-14 15:53:10.883

	ServiceInfo
	Object
	The ServiceInfo. Is an object that has attributes related to the Services associated with the Message Queue Id searched.
	

	
	<<The below are the properties of ServiceInfo.>>

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	Status
	Bool
	0: Inactive (False)
1: Active (True)
	True

	
	IsOptIn
	Bool
	0: Opt-Out (False)
1: Opt-In (True)
	True

	
	OptInType
	Integer
	1: Client App Text Message – Service Providers who manage their services.
2: Recipient Text Message – This is related to the recipients' actions.
3: Website
	1

	
	OptInOn
	DateTime
	The date and time the Service was Opt-In to.
	2020-01-30T13:29:06.75+00:00

	
	OptOutOn
	DateTime
	The date and time the Service was Opt-Out on.
	2020-02-30T13:29:06.75+00:00

	MessageGroupInfo
	Object
	Contains information related to Message Group Info.
	

	
	<<The below are the properties of MessageInfo.>>

	
	GroupId
	String
	Id to sub-group messages under the service. A case number is a common example of this.
	CTKS1245134

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	Status
	Bool
	0: Inactive (False)
1: Active (True)
	True

	
	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	
	ActivatedOn
	DateTime
	The date and time the Message Group was activated.
	2020-10-14 15:53:10.883

	
	DeactivatedOn
	DateTime
	The date and time the Message Group was deactivated.
	2020-10-15 15:53:10.883

	
	ExpireOn
	DateTime
	The date and time the Message Group will be expired and once expired it will change the status to inactive.
	2020-10-14 15:53:10.883

	
	IsOptIn
	Bool
	0: Opt-Out (False)
1: Opt-In (True)
	True

	
	OptInType
	Integer
	1: Client App Text Message – Service Providers who manage their services.
2: Customer Text Message – This is related to the customers' actions.
3: Website
	1

	
	OptInOn
	DateTime
	The date and time the Service was Opt-In to.
	2020-01-30T13:29:06.75+00:00

	
	OptOutOn
	DateTime
	The date and time the Service was Opt-Out on.
	2020-02-30T13:29:06.75+00:00

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the Return for any reason.
 Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "errorCode": null,
 "errorMessage": null,
 "phoneInfo": null,
 "emailInfo": {
 "id": 2,
 "emailAddress": "mlee@lacourt.org",
 "invalid": false,
 "invalidCheckedOn": "2929-01-24T16:00:00+00:00",
		 "invalid”: null
 },
 "services": [
 {
 "serviceId": 1,
 "status": true,
 "isOptIn": true,
 "optInType": "ClientAppEmail",
 "optInOn": "2020-01-30T14:18:16.09+00:00",
 "optOutType": "",
 "optOutOn": null
 },
 {
 "serviceId": 8,
 "status": true,
 "isOptIn": true,
 "optInType": "ClientAppEmail",
 "optInOn": "2020-01-30T10:51:59.45+00:00",
 "optOutType": "",
 "optOutOn": null
 }
],
 "messageGroups": []
 }
}

[bookmark: _DeactivateMessageGroup][bookmark: _UpdateMessageGroupStatus]UpdateMessageGroupStatus
Activate or deactivate a message group.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/UpdateMessageGroupStatus[?messageGroupId]&[status=false]

PARAMETERS
	Property Name
	Type
	Description
	Example

	MessageGroupId
	String
	Unique group Id
	NewGroupId

	Status
	Bool
	You can activate or deactivate a message group
True: activate
False: deactivate
	false

RETURNS
Returns confirmation that the message group id has been successfully deactivated or activated.
 Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": null
}

[bookmark: _ActivateMessageGroup]
[bookmark: _CheckMobileNumber][bookmark: _GetPhone]GetPhone
Checks if the mobile number provided is valid. It provides phone, service, and message group information relating to the mobile number.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetPhone?[mobileNumber]&[serviceId]&[messageGroupId]

PARAMETERS
	Property Name
	Type
	Description
	Example

	MobileNumber
	String
	Recipient’s Mobile Number.
	12099657121

	ServiceId
	Int
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	MessageGroupId
	String
	Id to sub-group messages under the service. A case number is a common example of this.
	CTKS12451

RETURNS
Returns phone, service, and message group information.

	Property Name
	Type
	Description
	Example

	isNumberFound
	Bool
	1: True if it exists in our Database
0: False if it does not exist in our Database
	1

	Invalid
	Bool
	1: Email address is invalid
0: Email address is valid
Null
	1

	InvalidCheckedOn
	DateTime
	The date and time that the Email became invalid.
	2020-10-14 15:53:10.883

	ServiceIsRemoved
	Bool
	1: True if the Service was removed and not accessible anymore.
0: False the Service is still active.
	False

	ServiceIsRemovedOn
	DateTime
	The date and time that the Service was removed.
	2020-10-14 15:53:10.883

	MessageGroupIsRemoved
	Bool
	1: True if the MessageGroup was removed and not accessible anymore.
0: False MessageGroup is still active.
	False

	MessageGroupRemovedOn
	DateTime
	The date and time that the Email was removed.
	2020-10-14 15:53:10.883

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the Return for any reason.
 Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "isNumberFound": true,
 "invalid": false,
 "invalidCheckedOn": null,
 "isOptIn": true,
 "optInOn": "2020-02-18T16:20:47.027+00:00",
 "optInType": "ClientAppTextMessage",
 "optOutOn": null,
 "optOutType": null,
 "serviceId": 1,
 "serviceTitle": "Admin Test Service",
 "serviceIsOptIn": true,
 "serviceOptInOn": "2020-02-19T13:47:57.11+00:00",
 "serviceOptInType": "ClientAppTextMessage",
 "serviceOptOutOn": null,
 "serviceOptOutType": null,
 "serviceIsRemoved": false,
 "serviceRemovedOn": null,
 "messageGroupGroupId": "CTKS12451",
 "messageGroupIsOptIn": true,
 "messageGroupOptInOn": "2020-03-23T13:21:22.797+00:00",
 "messageGroupOptInType": "ClientAppTextMessage",
 "messageGroupOptOutOn": null,
 "messageGroupOptOutType": null,
 "messageGroupIsRemoved": false,
 "messageGroupRemovedOn": null
 }
}

[bookmark: _CheckEmailStatus][bookmark: _GetEmailMessageStatus]GetEmailMessageStatus
Checks the email status to see if the message has been delivered.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetEmailMessageStatus?[receiptNumber]

PARAMETERS
	Property Name
	Type
	Description
	Example

	ReceiptNumber
	String
	Unique id assigned to this message.
	a-7457

RETURNS
Returns status of the email message queue that was sent.
	Property Name
	Type
	Description
	Example

	status
	Integer
	The current status of the message. The system sends text messages async. The initial status is “Pending” or “Sending”. The further status will be updated via CallbackURL.

See the list of statuses.
	Sent

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
	“status”: “Sent”
}
}

[bookmark: _ExtendMessageGroupExpiredOn][bookmark: _UpdateMessageGroupExpiredOn]UpdateMessageGroupExpiredOn
If a message group has expired, Service Provider can use this API to update the Expiration DateTime. This operation should not be used to create a NEW Message Group.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/UpdateMessageGroupExpiredOn?[messageGroupId]?[ExpireOn]

PARAMETERS
	Property Name
	Type
	Description
	Example

	[bookmark: _Hlk51250704]MessageGroupId
	String
	Id to group messages such as case number.
Not filtered if not specified.
	AP_32f9056a30fb9

	ExpireOn
	DateTime
	Date time for the Message Group to expire.
	2020-02-01

RETURNS
Returns as true if all validations are met.
Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": true
}

[bookmark: _UpdateMessageGroupTitle][bookmark: _Hlk69719550]UpdateMessageGroupTitle
Service Providers can update the title of their message groups by calling this API.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/msg/[version]/UpdateMessageGroupTitle

Post Body
· Name: “updateMessageGroupTitleRequest”
· Type: UpdateMessageGroupTitleRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of UpdateMessageGroupTitleRequest >>

	MessageGroupId
	String
	Id to group messages such as case number.
No filtering is not specified.
	CAD245BDI

	MessageGroupTitle
	String
	Customer-friendly text for MessageGroupId.

This must be used when sending with a MessageGroupId. Our Text Messaging Services uses the title to display to the customer when they receive text messages.
	Probate Test appointment at 09/17/20 4 PM

Parameters in Body Example

{
	"MessageGroupId": " CAD245BDI ",
	"MessageGroupTitle": "Probate Test appointment at 09/17/20 4 PM"
}

RETURNS
Returns as true if all validations are met.
Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": true
}

[bookmark: _GetBulkMessageQueue]GetBulkMessageQueue
Retrieve detailed information related to the bulk message queue id and the statuses of the messages that were sent.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/GetBulkMessageQueue[?bulkreceiptNumber]

PARAMETERS
	Property Name
	Type
	Description
	Example

	BulkReceiptNumber
	String
	Unique id assigned to this message.
	b-a-7457

RETURNS
Returns data from BulkMessageQueue, and MessageQueue.
	Property Name
	Type
	Description
	Example

	TotalMessageCount
	Integer
	The total number of messages that were requested to be sent out.
	2

	Status
	Integer
	0: Pending
1: In Progress
2: Complete
	Complete

	CreatedOn
	DateTime
	The time when the record was created.
	2020-03-23T13:21:22.3181776+00:00

	MessageQueueInfo
	Object
	The MessageQueueInfo. Is an object that has attributes related to the Message Queue record.
	

	
	<<The below are the properties of MessageQueueInfo.>>

	
	ReceiptNumber
	String
	Unique id assigned to this message.
	a-7457

	
	MessageType
	String
	The type of message whether it would be a TextMessage or Email. See the list of message types.
	Email

	
	Status
	String
	The current status of the message. The system sends text messages async. The initial status is “Pending” or “Sending”. The further status will be updated via CallbackURL.

See the list of Status.
	Sent

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": "b-a-405",
 "totalMessageCount": 2,
 "status": "Complete",
 "createdOn": "2021-04-20T17:48:16.41+00:00",
 "messageQueueInfo": [
 {
 "receiptNumber": "a-7956",
 "messageType": "Email",
 "status": "Delivered"
 },
 {
 "receiptNumber": "a-7957",
 "messageType": "Email",
 "status": "Sent"
 }
]
 }
}

[bookmark: _CheckInvalidMobileNumber]CheckInvalidMobileNumber
Retrieve detailed information related to the bulk message queue id and the statuses of the messages that were sent.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/CheckInvalidMobileNumber[?mobileNumber]

PARAMETERS
	Property Name
	Type
	Description
	Example

	MobileNumber
	String
	Recipient’s Mobile Number.
	12099657121

RETURNS
Returns information regarding invalid phone.
	Property Name
	Type
	Description
	Example

	Id
	Integer
	Identifier of a Phone record.
	1

	Invalid
	Bool
	1: Phone number is invalid
0: Phone number is valid
Null
	1

	InvalidCheckedOn
	DateTime
	The date and time that the Phone number became invalid.
	2020-10-14 15:53:10.883

	InvalidCode
	Integer
	The code from our Phone Invalid Reasons describes why the phone is invalid.
	10

	InvalidReason
	String
	This is the description of why the phone number is considered invalid.

	The carrier failed to deliver to this phone number with an unknown error.

[bookmark: _CheckInvalidEmailAddress]Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "invalid": true,
 "invalidCheckedOn": "2021-07-09T22:56:06.377",
 "invalidCode": 10,
 "invalidReason": "The carrier failed to deliever to this phone number with an unknown error."
 }
}

CheckInvalidEmailAddress
Retrieve detailed information related to the bulk message queue id and the statuses of the messages that were sent.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/msg/[version]/CheckInvalidEmailAddress[?emailaddress]

PARAMETERS
	Property Name
	Type
	Description
	Example

	EmailAddress
	String
	Recipient Email Address
	mlee@lacourt.org

RETURNS
Returns data from BulkMessageQueue, and MessageQueue.
	Property Name
	Type
	Description
	Example

	Id
	Integer
	Identifier of the Email Id.
	1

	Invalid
	Bool
	1: Email address is invalid
0: Email address is valid
Null
	1

	InvalidCheckedOn
	DateTime
	The date and time that the Email became invalid.
	2020-10-14 15:53:10.883

	InvalidCode
	Integer
	The code from our Email Invalid Reasons describes why the email is invalid.
	2

	InvalidReason
	String
	This is the description of why the email is considered invalid.

	The recipient's mailbox does not exist.

Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "bulkReceiptNumber": "b-a-405",
 "totalMessageCount": 2,
 "status": "Complete",
 "createdOn": "2021-04-20T17:48:16.41+00:00",
 "messageQueueInfo": [
 {
 "receiptNumber": "a-7956",
 "messageType": "Email",
 "status": "Delivered"
 },
 {
 "receiptNumber": "a-7957",
 "messageType": "Email",
 "status": "Sent"
 }
]
 }
}

[bookmark: _Toc1822538003]ShortURL API
It’s good practice to keep text messages short. URL must be shortened to be embedded in the text message to keep it short. This API provides utility to a short URL and the system provides a redirection service.
**Notice: Before using, if your domain is not part of the list below, please let the System Admin know.
Allowed Domains: "lacourt.org, lasuperiorcourt.org, azurewebsites.net"
Versioning information can be found under Version.
· GetShortUrl
[bookmark: _GetShortUrl]GetShortUrl
Converts a Long URL into a short URL.
	VERB
	ENDPOINT TEMPLATE

	GET
	https://CourtNotifyAPI.lacourt.org/surl/[version]/GetShortURL[?longURL]

PARAMETERS
	Property Name
	Type
	Description
	Example

	longURL
	String
	Normal URL
	http://www.lacourt.org/

RETURNS
Returns with the ShortURL.
Response Example

{
 "url": "https://s.lacourt.org/QmTcJ31",
 "successful": true,
 "errorMessage": null
}

[bookmark: _Toc281743410][bookmark: VerificationCode_API][bookmark: _Hlk69719745]VerificationCode API
This API generates a new verification code for Mobile numbers and Emails.
This API can be used to put the minimum security on your CallbackURL. You call ‘GetCode’ to generate a code and put the code into your CallbackURL while sending a message. When you receive a call on CallbackURL for the status update of the message, you can check if the URL contains the same code. Then, you can confirm this call is a legitimate call from the Court Notify system for the message.
Versioning information can be found under Version.
· CreateVerificationCode
· [bookmark: _GetCode]GetVerificationCode
CreateVerificationCode
This operation is used to create new Verification Codes.
	[bookmark: _Hlk33021343]VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/code/[version]/CreateVerificationCode

Post Body
· Name: “verificationCodeRequest”
· Type: VerificationCodeRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of VerificationCodeRequest >>

	AuthFor
	String
	Any value this Verification Code is used for such as a mobile number, the phone number is entered.
	12099657121

	AuthForType
	String
	This could be any value that the Service Provider can use it for such as “MobileNumber” or “Email”
	MobileNumber

	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	ValidDurationInMins
	Integer
	This is the time in minutes used to calculate the Expiration time.
	480

	AccessedIp (optional)
	String
	The IP address was used when the Verification Code was accessed on.
	127.0.0.1

Parameter in Body Example

{
	"AuthFor":"12099657121",
	"AuthForType": "MobileNumber",
	"ServiceId": 5,
	"ValidDurationInMins": “10”
}

RETURNS
Returns information regarding the Verification Code.
	Property Name
	Type
	Description
	Example

	AccessedOn
	DateTime
	The date and time that the code was accessed.
	2020-02-19T15:44:41.2344416+00:00

	CreatedOn
	DateTime
	This is the date and time the code was created.
	2020-02-18T16:23:00.693+00:00

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the Return for any reason.
Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "serviceInfo": null,
 "code": "3c387c73-4ccd-479e-b5c4-820b283b2f51",
 "expireOn": "2020-02-19T16:17:44.3998787+00:00",
 "accessedOn": "2020-02-19T16:07:44.3998947+00:00",
 "accessedIP": null,
 "createdOn": "2020-02-19T16:07:44.3998816+00:00",
 "authFor": "12099657121",
 "authForType": "MobileNumber",
 "serviceId": 5
 }
}

[bookmark: _VerifyCode][bookmark: _GetVerificationCode]GetVerificationCode
This operation is used to retrieve the information related to the verification code.
	VERB
	ENDPOINT TEMPLATE

	POST
	https://CourtNotifyAPI.lacourt.org/code/[version]/VerifyCode

Post Body
· Name: “getVerificationCodeRequest”
· Type: GetVerificationCodeRequest
	Property Name
	Type
	Description
	Example

	<<The below are the properties of GetVerificationCodeRequest >>

	Code
	String
	This is the Verification Code that will be generated.
	3f6a4f54-ce4d-46d3-a9f6-0ec081a852d3

	ServiceId
	Integer
	Registered services. A service is a group of messages. At least one service is required to register per service provider.
You can manage services in Service Provider Portal, and get this id.
	1

	AccessedIP
	String
	The IP address was used when the Verification Code was accessed on.
	127.0.0.1

Parameter in Body Example

{
	"ServiceId": 5,
	"Code": “1B5EF718-C428-4D23-B4B8-D6314C8F623B”
}

RETURNS
Returns information regarding the Verification Code.
	Property Name
	Type
	Description
	Example

	ExpireOn
	DateTime
	The date and time that the code expires.
	2020-04-18T17:23:00.693+00:00

	AccessedOn
	DateTime
	The date and time that the code was accessed.
	2020-02-19T15:44:41.2344416+00:00

	CreatedOn
	DateTime
	This is the date and time the code was created.
	2020-02-18T16:23:00.693+00:00

	AuthFor
	String
	This is the value that was used. Example “2” is the ID from ‘MessageQueueId’ or you can use a mobile number value.
	12099657121

	AuthForType
	String
	This could be any value that the Service Provider can use for its usage.
	Mobile Phone

** This list excludes the properties which are the parameter properties passed by the caller. Return sometimes includes the parameters passed for the caller to verify or use the parameter values with the Return for any reason.
Response Example

{
 "successful": true,
 "warning": null,
 "error": null,
 "value": {
 "serviceInfo": null,
 "code": "1b5ef718-c428-4d23-b4b8-d6314c8f623b",
 "expireOn": "2020-04-18T17:23:00.693+00:00",
 "accessedOn": "2020-02-19T16:22:34.9962871+00:00",
 "accessedIP": null,
 "createdOn": "2020-02-18T16:23:00.693+00:00",
 "authFor": "2",
 "authForType": "MessageQueueId",
 "serviceId": 5
 }
}

[bookmark: _Toc475554687]HelloAuthorizedWorld API
Call this API for the first-time API connection test with the access token.
· Hello
[bookmark: _Hello]Hello
This operation is used for connection with authentication information.
	VERB
	ENDPOINT

	GET
	https://CourtNotifyAPI.lacourt.org/HelloAuthorizeWorld/Hello

PARAMETERS
None
RETURNS
Returns a string message with the Client ID.
Response Example

"Hello authorized user! Message at 1/31/2020 5:10:48 PM. Your client id is fab2897a-e2ad-4fb3-b76b-d0888a00a392."

[bookmark: _Toc1696081361]HelloWorld API
Connection test API for the first time call without an access token.
· Hello
[bookmark: _Hello_1]Hello
This operation is used to connect without authentication information.
	VERB
	ENDPOINT

	GET
	https://CourtNotifyAPI.lacourt.org/HelloWorld/Hello

PARAMETERS
None
RETURNS
Returns a welcome message.
Response Example

"Hello! You called this web api successfully at 1/31/2020 5:11:45 PM."

[bookmark: _VerificationCode][bookmark: _VerificationCode_API][bookmark: _Text_Message_Replies]

[bookmark: _Toc2037160824][bookmark: API_Client_Library_for_NET]API Client
CourtNotify provides information on Web API and our client library for .NET.
[bookmark: _Toc1510278480][bookmark: Call_Limit_Policy]API Client Library for .NET NuGet package
CourtNotify team provides a ready-to-go NuGet Package for .NET developers. Client Library is available for .NET Standard and .NET Framework.

The library handles OAuth 2.0 access token protocol and implements the best practice to consume Rest API. It converts API results to objects; all object class definitions are included in the library.
Once initialized, you won’t have to reinitialize again as long as your application is still running.
Install
There are two options Service Providers can use to download our NuGet packages.
Option 1: Install through Visual Studio
1. Open Visual Studio
2. Go to Manage NuGet Package
3. Search for “courtnotify”
[image: Graphical user interface, application

Description automatically generated]
4. Install the package that you want
a. CourtNotify.ClientLibrary: This is the .NET Standard 2.0.
b. CourtNotify.ClientLibrary.NETFramework: This is the .NET Framework.
Option 2: Download through the NuGet website
1. Go to https://www.nuget.org/
2. On the Search box, type in “courtnotify”
[image: Diagram, engineering drawing

Description automatically generated]
3. There are two packages:
a. CourtNotify.ClientLibrary: This is the .NET Standard 2.0.
b. CourtNotify.ClientLibrary.NETFramework: This is the .NET Framework.
NuGet Change History for each Version
Standard (CourtNotify.ClientLibrary)
	Date
	Version
	Description

	08/04/2022
	1.1.0
	Removed RestSharp dependency due to a vulnerability and replaced it with Microsoft libraries.

	07/22/2022
	1.0.0 (Deprecated)
	Initial version.

Framework (CourtNotify.ClientLibrary.NETFramework)
	Date
	Version
	Description

	08/12/2022
	1.2.0
	This version 1.2.0 fixes a deadlock issue from the previous version 1.1.0.

	08/04/2022
	1.1.0
	Removed RestSharp dependency due to a vulnerability and replaced it with Microsoft libraries.

	07/22/2022
	1.0.0 (Deprecated)
	Initial version.

Code sample
Code samples utilizing the client library NuGet package are available to download from the Service Provider website.
Set Account Information
To call Web API, all you need to do is declare the client id, secret, and subscription key.
Call the‘ BaseAPI.Initialize()’ method from where your application launches. Then, the client library takes care of authentication for you. This is only necessary one time in your application life cycle. TimeOffSet can now be specified for date and time.
BaseAPI.Initialize(
 clientID: "<<Copy and paste your client id here>>",
 secret: "<<Copy and paste your secrete here>>",
 subscriptionKey: "<<Copy and paste your development subscription here>>",
 timeOffset: new TimeSpan(-7, 0, 0));
Send Text Message
Call ‘MessageAPI.SendTextMessage()’ method. It returns an ID that can be used to check the status.
Error property contains detailed information about why it failed. See the ‘Error Codes’ section for detail.
#region SendTextMessage
 var textReceiptNumber = string.Empty;
 var textMessageRequest = new TextMessageRequest
 {
 ServiceId = ServiceId,
 MessageGroupId = MessageGroupId,
 MessageGroupTitle = MessageGroupTitle,
 MobileNumbers = new List<string> { RecipientMobileNumber },
 TextMessage = TextMessage,
 CallbackURL = callbackURL,
 RequestResponseInText = new RequestResponseInText
 {
 RequireResponse = true,
 ResponseValidUntil = DateTime.UtcNow.AddDays(3),
 RespondOptionList = new List<TextRespondOption> {
 new TextRespondOption {RespondText = "Yes", RespondValue = "Y"},
 new TextRespondOption {RespondText = "No", RespondValue = "N"}
 }
 }
 };
 APIResult<List<TextMessageResult>, APIError> apiResultText = MessageAPI.SendTextMessage(textMessageRequest);
 if (apiResultText.Successful)
 {
 //Save ReceiptNumber to check its status later.
 textReceiptNumber = apiResultText.Value.FirstOrDefault().ReceiptNumber;
 }
 else //Faile to send
 {
 if (apiResultText.Error.Code == ((int)APIErrorCodeEnum.InvalidPhoneNumber).ToString())
 {
 //It failed to send the text message because it's invalid phone number.
 //See Error.Description and Error.Message for more information.
 string errorCodeDescription = apiResultText.Error.Description;
 string errorDetail = apiResultText.Error.Message;
 }
 }
 #endregion

Send Email Message
Call ‘MessageAPI.SendEmailMessage()’ method. It returns an ID that can be used to check the status.
#region SendEmailMessage
 var emailReceiptNumber = string.Empty;
 var pdfFileName = "LASCSiteLogo1.pdf";
 var pdfFileBytes = File.ReadAllBytes(pdfFileName);
 var pdfBase64String = pdfFileBytes.ToBase64StringFromBytes();

 var emailMessageRequest = new EmailMessageRequest
 {
 ToEmails = new List<string> { RecipientEmail },
 EmailSubject = EmailSubject,
 EmailBody = EmailBody,
 ServiceId = ServiceId,
 MessageGroupId = MessageGroupId,
 MessageGroupTitle = MessageGroupTitle,
 EmailAttachments = new List<EmailMessageAttachment>
 {
 new EmailMessageAttachment
 {
 FullName = pdfFileName,
 Data = pdfBase64String,
 MetaData = new EmailMessageAttachmentMetaData
 {
 ContentEncoding = Encoding.ASCII.WebName,
 ContentType = MediaTypeNames.Application.Pdf
 }
 }
 }
 };
 APIResult<List<EmailMessageResult>, APIError> apiResultEmail
 = MessageAPI.SendEmailMessage(emailMessageRequest);
 if (apiResultEmail.Successful)
 {
 //Save ReceiptNumber to check the status later by calling GetMessageQueue.
 emailReceiptNumber = apiResultEmail.Value.FirstOrDefault().ReceiptNumber;
 }
 else //Faile to send
 {
 if (apiResultEmail.Error.Code == ((int)APIErrorCodeEnum.OptOut).ToString()) {
 //It failed to send email message because Email Address Opt Out.
 //See Error.Description and Error.Message for more information.
 }
 }
 #endregion

Check Message Status
Call ‘MessageAPI.GetMessageQueue()’ method. It returns the MessageQueueInfo object which contains all information of the message along with message status (StatusEnum property).
#region GetMessageQueue
 APIResult<MessageQueueResult, APIError > apiResultMessageQueue
 = MessageAPI.GetMessageQueue(textReceiptNumber);

 if (apiResultMessageQueue.Successful)
 {
 //Message Queue information was retrieved successfully.
 MessageQueueResult messageQueue = apiResultMessageQueue.Value;
 //Can check its status
 MessageStatusCd status = messageQueue.StatusEnum;
 }
 else // Failed to retrieve
 {
 if (apiResultMessageQueue.Error.Code == ((int)APIErrorCodeEnum.RelatedRecordIsNotFound).ToString())
 {
 //Failed to retrieve the information.
 //See Error.Description and Error.Message for more information.

 }
 }
 #endregion

Retrieve Message Log
Call ‘MessageAPI.SearchMessageQueue()’ method to search messages. It returns multiple message records matching the specified criteria.
#region SearchMessageQueue
 var messageQueueRequest = new MessageQueueRequest
 {
 FromDate = DateTime.Now.Date.AddDays(-1),
 ToDate = DateTime.Now
 };
 APIResult<List<MessageQueueResult>, APIError> apiResultMessageQueueLog
 = MessageAPI.SearchMessageQueue(messageQueueRequest);

 if (apiResultMessageQueueLog.Successful)
 {
 //Message Queue informations was retrieved successfully.

 foreach(MessageQueueResult m in apiResultMessageQueueLog.Value)
 {
 //read the information.
 MessageStatusCd status = m.StatusEnum;
 }
 }
 else
 {
 //It failed to send text message.
 if (apiResultMessageQueueLog.Error.Code == ((int)APIErrorCodeEnum.RelatedRecordIsNotFound).ToString())
 {
 //Failed to retrieve the information.
 //See Error.Description and Error.Message for more information.
 }
 }
 #endregion

Others
There are other methods available to check opt-in/out information. Please see the APICallExample.cs file for all examples in the library.
[bookmark: _Limit_Calls][bookmark: _Call_Limit_Policy]

[bookmark: _Toc1770168022]Call Limit Policy
Depending on the Product ‘Development’ or ‘Production’ you are subscribed to, there is a maximum number of calls you can make to the API to send messages. This helps API users use the right API operation and prevents accidental API misuse.
For example, to send many messages at once by a nightly batch job must you use Bulk API ‘SendTextMessageInBulk’ or ‘SendEmailMessageInBulk’, which is counted as only one call although you include 100K messages, instead of calling ‘SendTextMessage’ or ‘SendEmailMessage’ for an individual message which costs big in network communication and increases failure rate.
If you need to use a higher volume because Bulk doesn’t work for you, then you may request a higher than normal production policy. Contact System Admin if you would like to use ‘HigherVolumeProduction’.
Development
Calls to API: 30 calls / 60 seconds
The lower call limit in the ‘Development’ subscription prevents accidental API misuse during development time.
Production
Calls to API: 300 calls / 60 seconds
HigherVolumeProduction
Calls to API: 3000 calls / 60 seconds

[bookmark: _Web_API][bookmark: _Error_Handling]

[bookmark: _Toc763718690]Error Handling
API returns an error with detailed information. Here is the information on how to analyze an error. For more details on API Errors, go to API Errors.
Error Object
APIResult’s Error property contains:
· Code property: It matches the ‘Code’ value in the code list.
· Description property: It matches the ‘Description’ value in the code list.
· Message property: This contains further detailed information for the specific API call incident. This provides information for a developer to fix a bug expediently.
Code Sample with Client Library
When you get a returned object from an API call, you need to check the error with the ‘Error’ property like below.

if (apiResultText.Error.Code == ((int)APIErrorCodes.InvalidPhoneNumber).ToString())
{
 //It failed to send the text message because it's an invalid phone number.
 //See Error.Description and Error.Message for more information.
 string errorCodeDescription = apiResultText.Error.Description;
 string errorDetail = apiResultText.Error.Message;
}

[bookmark: _Toc567205958]Warning Messages
Warnings messages are to notify Service Providers of a minor issue with their request JSON, but the message will still be sent through.
Example: If a Service Provider provides a duplicated email in their ‘ToEmail’ request, we will respond with this warning message: “Duplicated ‘ToEmails’: mlee@lacourt.org
	Warning Messages

	Duplicated ‘ToEmails’

	’FriendlyFromName is discarded because ‘FromEmail’ was not specified.

	’ReplyToName’ is discarded because ‘ReplyToEmail’ was not specified.

[bookmark: _Toc1033535881][bookmark: TimeOffSet][image:]Specifying TimeOffset
Service Providers can specify the time offset using the Client Library to any time zone they would like to use. If not specified, then it will return the date and time in PDT.
[image: Text

Description automatically generated]

[bookmark: _HTTP_Requests_Status][bookmark: _Status][bookmark: _Message_Type][bookmark: _Toc1223997530]Value Tables
List of values and their meaning specified in API.
[bookmark: _Message_Type_1][bookmark: _Toc735871092][bookmark: Message_Type]Message Type
Type of messages that the system supports.
	Code
	Name

	1
	TextMessage

	2
	Email

[bookmark: _MessageQueue_Status][bookmark: _Toc2110912338][bookmark: MessageQueueStatus]MessageQueue Status
The status of a queued message.
	Code
	Name
	Definition

	0
	PrePending
	New MessageQueue record that has been created with only minimal validation.

	1
	Pending
	Default status before calling notification service.

	2
	Sending
	Before notification services are called, this is the initial status.

	3
	Sent
	For text messages and emails, this status identifies that the message has been sent to the Notification Service.

	4
	Temporary Failed
	This status is only temporary and will not be the final status for messages.

	5
	InProgress
	This status shows that the MessageQueue record is being processed by our WebJob.

	7
	Delivered
	Final status for text & email messages if they have been successfully delivered to their recipient.

	8
	Discarded
	This message is not valid to be sent to the notification services.

	9
	Failed
	The message has failed to send and an Error Message will display the reasons why.

[bookmark: _API_Error][bookmark: _Phone_Invalid_Reason][bookmark: _Toc344706888][bookmark: Phone_Invalid_Reason]Phone Invalid Reason
The list of reasons why a phone number was considered invalid.
	Code
	Name
	Description

	1
	Twilio_21612
	The phone number provided is not reachable via text message.

	2
	Twilio_30004
	The phone number you are trying to reach has been blocked from receiving messages.

	3
	Twilio_21401
	The phone number you specified was not a valid text message-enabled phone number.

	4
	Twilio_21407
	This phone number does not support text messaging.

	5
	Twilio_21614
	This phone number may be a landline number or formatted incorrectly.

	6
	Twilio_30006
	Carrier failed to deliver a message to the landline or unreachable carrier.

	7
	Twilio_63033
	The recipient has been blocked from receiving messages.

	8
	Twilio_30003
	The phone number you are trying to reach is switched off or otherwise unavailable.

	9
	Twilio_30005
	The phone number you are trying to reach may no longer exist.

	10
	Twilio_30008
	The carrier failed to deliver to this phone number.

	11
	Twilio_21211
	The phone number provided has an invalid format.

[bookmark: _Email_Invalid_Reason][bookmark: _Toc432065615][bookmark: Email_Invalid_Reason]Email Invalid Reason
This is the list of why some email addresses are considered invalid. You may see other error codes for emails, but they are only temporary and will be retried again. If the error code has a permanent failure, the email is considered invalid and will not be retried.
If you see an error code for “250”, that email for Mailgun has been successfully delivered.
	Code
	Name
	Description
	Is the status a Permanent failure?

	1
	Mailgun_552
	The recipient's mailbox has exceeded its limits.
	No

	2
	Mailgun_550
	The recipient's mailbox does not exist.
	Yes

	3
	Mailgun_554
	The recipient’s email box is no longer in use.
	Yes

	4
	Mailgun_605
	The recipient’s mail server has rejected the email message.
	Yes

	5
	Mailgun_607

	The recipient has marked your message as spam.
	No

	6
	Mailgun_612
	The email provider was unable to connect to the mail server to send out the email.
	No

	7
	Mailgun_498
	The recipient's mailbox does not exist.
	Yes

	8
	Mailgun_511
	The recipient's mailbox does not exist.
	Yes

	9
	Mailgun_450
	The recipient's mailbox does not exist.
	Yes

	10
	Mailgun_499
	The recipient's mailbox does not exist.
	Yes

[bookmark: _API_Error_1][bookmark: _Toc661606728][bookmark: API_Errors]API Errors
These are the list of errors returned when you call our API. Some API Errors are caused by specific MessageQueue Errors. For more details see MessageQueue Errors below.
	Code
	Description

	100
	Required value is missing.

	101
	Related record is not found.

	103
	Mismatch record

	107
	Duplicated Entry

	108
	Child Constraint

	110
	Opt-Out

	111
	Removed Service or Message Group

	113
	Invalid Parameter value

	114
	Expired

	115
	Deactivated Service or Message Group

	116
	Message Size Limit Exceeded

	117
	Blocked

	120
	Update Failed

	200
	Failed to send message

	500
	Error

	301
	Email File Layout Error

	302
	Text Message File Layout Error

[bookmark: _MessageQueue_Error][bookmark: _Toc36989497][bookmark: MessageQueueErrors]MessageQueue Errors
List of error codes that describe what each error message is.
	ErrorCode
	Description

	100
	Invalid Phone Number

	101
	Deactivated Service or Message Group

	102
	Related record is not found.

	103
	Invalid Client Id

	104
	Invalid Service

	105
	Duplicate Entry

	106
	Invalid Name

	107
	Invalid Email Address

	108
	Limit Exceeded

	109
	Invalid Domain Name

	110
	Twilio Status Update Failed

	111
	Email Error

	112
	Expired

	113
	Invalid Message Group

	114
	Mismatch record

	115
	Invalid Message Id

	116
	Invalid CallBackURL

	117
	Invalid Entry

	118
	Email Message Status Update Failed

	119
	Removed Service or Message Group

	120
	Failed to Send Message

	200
	Customer Opt-Out

	201
	Blocked

	300
	Required parameter is missing

	500
	Error

[bookmark: _Toc111017189]HTTP Requests Status Codes
Commonly used Status Codes.
	Status Code
	Description
	Explanation

	200
	OK
	The request has succeeded.

	429
	Too Many Requests
	Too many calls to the API have been made within the allowed time.

	400
	Bad Request
	Cannot process the request due to an error on the user side e.g. invalid syntax

Reference: https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

[bookmark: _Toc1043957837]Data Type Common Rule
[bookmark: _Toc759713888]Date Time
· DateTime is returned in UTC, but when initializing the Client Library, we can provide the offset (Timespan) to convert the time into any timezone.
· See the example in How to specify a time offset in Client Library
[bookmark: _Toc2089597973]Phone Number
· The phone number is saved and returned with a numeric value only.
[bookmark: _Toc1877585177][bookmark: Email_Attachments]Email Attachments
Service Providers can send emails with attachments using SendEmailMessage and SendEmailMessageInBulk.

[bookmark: _Toc628323110][bookmark: CallBackURL]CallBack URL
CallBackURL is used to update the status of the message that was sent to the recipients.
Example URL: https://crmportalqa.lacourt.org/Appointment/MessageStatus?receiptNumber=a-7468&status=sent
[image:]
1. From the Example URL that was provided, we are appending the following fields:
a. receiptNumber
i. This is a unique identifier of the message.
ii. Type: String
b. Status
i. Value: Pending, Sending, Sent, Delivered, Discarded, and Failed
ii. Type: String
c. errorMessage
i. Value: Any type of error message that can occur during the operation.
ii. Type: String
d. respondValue
i. Value: If Service Provider is using RequestResponse, then it will return the message that the recipient replied back with.
ii. Type: String
2. Examples:
a. https://crmportalqa.lacourt.org/Appointment/MessageStatus?reminderId=0a37d3f7-9986-eb11-8137-005056a30fb9&receiptNumber=a-7480&status=delivered&errorMessage
b. https://crmportalqa.lacourt.org/Appointment/MessageStatus?reminderId=0a37d3f7-9986-eb11-8137-005056a30fb9&receiptNumber=a-7480&status=failed&errormessage=Removed Service or Message Group
3. This is a practical example of how Court Notify uses callback URL with their reminder notifications. The receipt number is saved with the status of that email message and the date and time it was updated.

[bookmark: _Toc720151111]Using Website instead of API calls
‘Service Provider Website’ is available for non-developer end-users to view logs and send messages without programming API calls.
The same ‘Service Provider Website’ is also used by a developer to manage API accounts and services. The features provided on the website might be limited and don’t support all API features.
[bookmark: _Toc238218299]Service Provider
This is the home page for Service Providers when they are logged in.
How to download guides?
1. Go to the Help Guides header.
2. Click “Download Court Notify..” help guides.
[image: Graphical user interface, text, application, email

Description automatically generated]
How to download .NET Client libraries?
1. Go to the .NET Client Library header.
2. Click “Download CourtNotify API Client Library Using .NET..”
[image: Graphical user interface, text, application

Description automatically generated]
How to contact System Admin?
1. Scroll to the bottom of the page where the header says System Admin Contacts.

[bookmark: _Services][bookmark: _Toc1547071165][bookmark: Services]Services
SP users can easily add services to use. Services are individual applications that belong to your organization.
Example: Los Angeles Superior Court has an Appointment Service, Traffic Payment Plan Service, etc.
Changes made on the Service page may take up to 15 minutes due to caching.
[bookmark: _How_to_add]How to add a Service?
1. Go to the Services tab.
2. Click on the “+ Add” button on the right.
[image: Graphical user interface, text, application, email

Description automatically generated]
3. Fill out the fields with information on your service.
[image: Graphical user interface, text, application, email

Description automatically generated]
a. Title: This is the name of the Service that you are providing to recipients.
Example: “Appointment”, “Traffic Payment Plan”, “Jury Notification Service”
b. Description: Short description of what your service offers.
Example: “Traffic Payment Plan is a service that sends enrollment confirmations to recipients and payment reminders.”
c. Friendly From Email Name: If you want to use your own “From Email Friendly Name”, then you can specify the name here that recipients will see instead of the email address. Example: “Appointment” (Optional)
d. From Email: This is the email address that you want your recipients to see. Example: OCCAppointment@occ.org (Optional)
e. Friendly Reply-to Email Name: If you want a different email for recipients to reply to, then add a “Friendly Reply-to Email Name”. Example: NO-REPLYOCC
f. Reply-To Email: This is the email address that recipients will reply to if specified. Example: “NO-ReplyOCC@occ.org”
g. Use Message Group: If checked, your Service must use Message Groups. After this is saved, it cannot be changed.

This allows recipients to Opt-Out of the specific Message Group instead of the entire Service as a whole.
Example: This will prevent recipients from Opt-Out of the entire Service as a whole, they can only Opt-Out of that certain Message Group like for different Jury Cases. If the Service Provider wants to create a generic Notification group, they can create a new message group called “Traffic Payment Plan-General”.

4. Click on the Save button for your changes to create a new service.
How to delete a Service?
This is used to remove a Service that you might have accidentally created or a Service that is not in use.
1. On the Services page, you will see on the right of the table a “Delete” link button.
2. This button will only appear if the Service did not send any messages out yet.
a. If the Service has messages that were sent out already, you can only “Disable” the service.
[image: Graphical user interface

Description automatically generated with medium confidence]
3. Click on the “Delete” link button to permanently delete the service.
[image: Graphical user interface

Description automatically generated]
How to edit a Service?
If you need to make changes to a Service, you can edit the features here.
1. On the Services page, on the right side of the table click on the “Edit” link button.
[image: Graphical user interface

Description automatically generated with medium confidence]
2. Click on the textbox that you want to edit.
[image: Graphical user interface, text, application, email

Description automatically generated]
	Field Name
	Description

	Id
	The registered service under which this message is sent. Service is the default group of messages, called a subscription that the recipient can Opt-in or out.

	From Email with Friendly Name will be
	This is the friendly From Email Name + From Email address that will be displayed to the recipient.

	Reply-to Email with Friendly Name will be
	This is the friendly Reply-to Email Name + Reply-to Email that will be displayed to the recipient.

	Use Message Group
	Yes: This service uses Message Groups.
No: This service does not use Message Groups.

	Status
	Active: The service is being used and can send messages.
Inactive: The service is not being used and cannot send messages.

	Created On
	The date and time the service was created.

	Updated On
	The date and time the service was updated.

** This list excludes the properties mentioned in “How to add a Service?”.
3. “Save” your changes.
How to view Messages related to the Service?
1. Look for the column “Messages” on the right of the table.
2. Click the link button “View” to see messages related to the Service on the “Message Log” page.
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML2d24c3.PNG]
[bookmark: _Message_Groups][bookmark: _Toc2052472954]Message Groups
SP users can view message groups that are being in use from Services.
Example: You might have a service called Traffic Payment Plan with different traffic tickets as message groups such as “Traffic Ticket #T34F34, Traffic Ticket #T3434D”.
How to view Message Groups?
1. Go to the Message Groups tab.
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML1a44c8e.PNG]
2. Click on the dropdown box with the placeholder “Select a Service”.
[image: Graphical user interface, application

Description automatically generated]
3. Choose which Service you want to view your Message Group(s) and the result(s) will be displayed below.
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML26d1fd.PNG]
How to see more details for a Message Group?
1. Select a Service from the dropdown menu.
2. On the results displayed, click anywhere on the record that you want to see more details.
[image: Graphical user interface, text, application

Description automatically generated]
3. More details will be shown in the Message Group Detail popup.
How to download Message Groups?
1. Filter your items by Service and the date range.
2. Click on “Export to CSV” to retrieve your exported file.
[image: Graphical user interface, text, application

Description automatically generated]
How to edit the Expiration time for a Message Group?
1. When the Message Group Detail popup is opened, click on the text boxes where ‘Expire On:’ is located to change the date and time you want the Message Group to expire. [image: Graphical user interface, application

Description automatically generated]
[bookmark: ServiceProviderWebsite_MessageGroupExpir]How long can I view my Message Groups for?
1. View the Message Groups page and look for the red text on top.
2. Then check the records displayed and look for the ‘Expire On’ date. This is how long the Message Groups will be available.
[image: Graphical user interface, application

Description automatically generated]
[bookmark: _Message_Log_1][bookmark: _Toc858446110]Message Log
View messages that your services have sent out or replies from your recipients. Service Providers can use the “Filter” button to see all of the messages from certain criteria or use the “Search” button by a specific keyword to find the certain message(s).
[bookmark: _How_to_‘Filter’]How to ‘Filter’ messages?
This is the default display when Service Provider opens up the page with the Date Now to 1 month ago. Service Providers can see their messages from certain criteria.
1. On the top panel, select the information you want to ‘Filter’.
[image: Graphical user interface, application

Description automatically generated]
A. Service: These are the Services that you have created. Examples: “Appointment”, “Event”, “Traffic Payment Plan” etc.
B. Message Type: Messages can be either “Email” or “TextMessage”.
C. From Date and To Date: Set the range you want to view messages.
D. Status: Default is All
a. Status explanations can be found on MessageQueue Status.
E. Message Group: Enter ‘messageGroupId’ or ‘messageGroupTitle’ to search for certain message groups.
e.g.)
2. Results appear below:

[image: A screenshot of a computer

Description automatically generated]

	Table Header
	Description

	Receipt Number
	Unique Id for messages.

	Created On
	The date and time the message was created.

	Service
	The name of the Service.

	Message Type
	The type of message whether it would be a TextMessage or Email. See the list of message types.

	Status
	See the list of status.

	Status Updated On
	The date and time the Status was updated on.

	Message Group
	Recipient-friendly text for MessageGroupId.

	Recipient
	Can be either a mobile number or an email address.

	Message
	Text Message or Email Body.

	Bulk Receipt
	Yes: This message was sent as part of a Bulk Message.
No: This message was not sent as part of a Bulk Message.

	Respond?
	Yes: The recipient is required to respond to the message.
No: No response is required from the Recipient.

3. When you click on the record, it will pop up the Message Detail log.
4. Message Detail pops up more detailed information listed below.
[image: A screenshot of a computer

Description automatically generated]
	Field Name
	Description

	Send Message Try Count
	The number of attempts this message was retried on our batch job.

	Requested to Hide Unsubscribe
	Yes: The unsubscribe link is not available for this email message.
No: The unsubscribe link is available for this email message.

	Segment Count
	One segment is 160 characters or less. One Text Message can be one or more segments.

	Status Detail by Text Message Service
	The status of the Text Message with the most common statuses are undelivered, delivered, and queued.

See a common list of statuses.

	Status Detail by Text Message Service Updated On
	The date that the error message and detail were updated.

	Error Code by Text Message Service
	The error code is associated with the Status Detail by Text Message Service.

For more information, please visit the website Twilio Common Error Codes.

	Reply-To Email
	The email address that you specified for your recipient to reply to.

	Status Detail by Email Service
	The status of the Email Messages provided from MailGun.

See the MailGun statuses.

	Status Detail by Email Service Updated On
	The date that the error message and detail were updated.

	Error Code by Email Service
	The error code is associated with the Status Detail by Email Message Service.

More details will be added soon.

	Message Group Id
	Id to sub-group messages under the service. (i.e., Case Number)

	Message Group Expire On
	The date and time the Message Group will be expired and once expired it will change the status to inactive.

	Message Group Status
	Indicate if this Message Group is active or not.

False: MessageGroup is not active.
True: MessageGroup is active.

	Message Group Deactivated On
	The date and time the Message Group was deactivated.

	Message Group Activated On
	The date and time the Message Group was activated.

	CallBackURL
	The URL that was passed from the Service Provider’s system will be updated with the Message-Id, status, and error message.

	CallBack Try count
	The number of times this URL was called to be updated.

	Calback Last Called On
	The date and time the CallBackURL was called.

	Respond Text
	The user-friendly text that a recipient replied with.

	Response by Recipient
	The values that are stored in DB when a recipient selects this option.

	Bulk Message Queued On
	The date and time, the Bulk Message was queued to our batch job to send out.

	Message Count by the Bulk Message
	The total amount of messages related to the Bulk Message group that was sent out.

	Cost
	Cost of this message.

	Error Code
	Unique id of error that this message has not been sent.

See the list of message queue errors.

	Error Message
	A generic error message explaining what the Error Code means.

** This list excludes the properties mentioned on number 2 where the Table Header is explained.

[bookmark: _How_to_‘Search’]How to ‘Search’ for a message?
Service Providers can search for a specific keyword to find a record.
1. Search for a ‘Receipt Number, ‘recipient’s Email Address’, ‘recipient’s Mobile Number’ or ‘Bulk Receipt’ on the text box.
a. Examples of ‘Receipt Number’, ‘Recipient email’, or ‘Recipient mobile number’ can be found in “SendTextMessage Returns” or “SendEmailMessage Returns”
b. Example of what a ‘Bulk Receipt’ can be found in ‘SendTextMessageInBulk Returns’ and ‘SendEmailMessageInBulk Returns’.
c. How to search for a ‘Receipt Number’?
 [image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML68f6d9.PNG]
d. How to search for a ‘recipient’s Email Address’?
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML14469be.PNG]
e. How to search for a ‘recipient’s Mobile Number’?
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML149c13c.PNG]
f. How to search for a ‘Bulk Receipt’?
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML69fbc6.PNG]

2. Click on the “Search” button and the result will appear below:
[image:]
How to download Message Logs?
1. On the Message Log page, click on “Export to CSV” to retrieve your exported file.
[image: Graphical user interface, text, application

Description automatically generated]

[bookmark: ServiceProviderWebsite_MessageLogExpire][bookmark: ServiceProviderWebsite_Send_Message]How long can I view my Message Logs?
1. View the Message Log page and look for the red text on top.
2. The red text will let you know how long you can view your Message logs.
[image: Graphical user interface, application

Description automatically generated]

[bookmark: _Toc1393737482]Directory
The directory lists the information of an email address or phone number in which a message has already been sent to.

View Directory

1. Click the ‘Directory’ label in the navigation bar.

[image: Graphical user interface, website

Description automatically generated]
2. Choose either ‘Email Address’ or ‘Mobile Phone’.

[image: Graphical user interface, text, application

Description automatically generated]

3. Enter the ‘Email Address’ or ‘Mobile Phone’ that you wish to search for.

[image: Graphical user interface, text, application, email

Description automatically generated]

	Field Name
	Description

	Email/Phone ID
	Unique email or phone ID for messages

	Email Address/Mobile Number
	Email address or phone number of the recipient

	Invalid
	Valid state of the email/phone (True/False)

	Verified
	Email/phone verified by user (True/False)

	Verified On
	Date email/phone verified by user

	Invalid Checked By
	The MessageQueue record associated with the status update (Sync-Status)

	Invalid Checked On
	Date marked invalid

	Invalid Reason
	Reason marked invalid

	Invalid Changed By App User
	The name of admin that changed to valid

	Is Opt-In
	Status of the user opt-in to messages

	Opt-in On
	Date of the user opt-in to messages

	Opt-in Type
	Type of messages, email or text

	Opt-out On
	Date opt-out of messages

	Opt-out Type
	Type of messages opt-out, email or text

Change to Valid

If an email address or phone number is marked as invalid and you wish to change it to valid, click the blue check mark labeled ‘Change to Valid’ in the ‘Invalid’ field. This will allow Court Notify to retry when you send a message.

[image: Graphical user interface, text, application, email

Description automatically generated]

Send Message
[bookmark: _Send_Bulk_Online]Service Providers (s) can easily send text messages or emails in bulk.
[bookmark: _How_to_Send]How to Send Bulk Online?
1. Navigate to the ‘Service Provider’ tab from the home page.
[image: Graphical user interface, website

Description automatically generated]
2. Click on the ‘Send Message’ tab.
[image: Graphical user interface, text, application, chat or text message

Description automatically generated]
3. Select the ‘Service’ you want to use to send messages from.
e.g.) If you are sending emails from your Traffic Payment Plan service, use “Traffic Payment Plan”.
[image: C:\Users\mlee\AppData\Local\Temp\SNAGHTML1b56ad2.PNG]
4. Select whether you want to send text message(s) or email(s).
[image: Graphical user interface, application

Description automatically generated]
a. For Email messages
i. Download the ‘Email File Template.csv’ file.
[image: Graphical user interface, text, application

Description automatically generated]
ii. The optional fields in the .CSV are required headers even though the values under them can be empty.
iii. Fill out the corresponding columns.
1. Email Recipients: Type in an email address in this format email@lacourt.org in column A
2. For multiple email addresses, you can type in column A using comma “,” or semicolon “;” mlee@lacourt.org;DVoong@lacourt.org
3. Email Subject: The subject of your email
e.g.) Traffic Payment Plan Reminder
4. Email Body: This is your message to the email recipients. You can also use raw HTML to format your message. Websites like https://html-online.com/editor/ can help format your HTML code properly.
5. Message Group Id (Optional): If your service has ‘UseMessageGroup’ checked, then you must create a Message Group Id. Id to sub-group messages under the service. A case number is a common example of this.
e.g.) TPP_100870245435
6. Message Group Title (Optional): If your service has ‘UseMessageGroup’ checked, then you must create a Message Group Title. Recipient-friendly text to see if they want to read what the message is about.
e.g.) Traffic Payment Plan for Ticket #AR499145
7. Reply-to Email (Optional): If you require a Reply-to email for recipients to reply to, you can specify a Friendly Name with the Reply-to email here.
e.g.) Traffic Payment Plan Replies <TPPReplies@occourt.org>
e.g.) TPPReplies@occourt.org
8. From Email (Optional): You can use your own FromEmail like “occnotify@occourt.org” by registering their domain with Court Notify.
Please see the “Why do I have to register our domain” section.
e.g.) NO-Reply <NO-ReplyOCC@occourt.org>
e.g.) occnotify@occourt.org

Example of CSV File
[image: Graphical user interface, text, application, Word

Description automatically generated]
Example of CSV File with multiple recipients
[image: Text

Description automatically generated]

b. For Text Messages
i. Download the ‘Text Message File Template.csv’ file.
[image: Graphical user interface, text, application

Description automatically generated]
ii. Fill out the corresponding columns.
1. Mobile Number Recipients: Type in mobile numbers using this format ‘12099657121’.
a. For multiple mobile numbers, you can type in column A using comma “,” or semicolon “;” 12099657121;12344567891
2. Message: This is your message to the Mobile Number recipients.
e.g.) You have an upcoming traffic ticket payment due on 12/25/20. Please submit payment to lacourt.org.
3. Message Group Id (Optional): If your service has ‘UseMessageGroup’ checked, then you must create a Message Group Id. Id to sub-group messages under the service. A case number is a common example of this.
e.g.) TPP_100870245435
4. Message Group Title (Optional): If your service has ‘UseMessageGroup’ checked, then you must create a Message Group Title. Recipient friendly text to see if they want to read what the message is about.
e.g.) Traffic Payment Plan for Ticket #AR499145

Example of CSV File
[image: Graphical user interface, text, application, chat or text message

Description automatically generated]
Example of CSV File with multiple recipients
[image: Graphical user interface, text, application

Description automatically generated]
5. Save your file as CSV.
[image:]
6. Go back to the Send Message page and Click on the button “Choose File” to upload your CSV.
[image: Graphical user interface, text, application

Description automatically generated]
[image: Graphical user interface, application

Description automatically generated]
7. Review and Confirm if everything is correct.
a. Email
[image: Graphical user interface, text, application

Description automatically generated]
b. Text Message
[image: Graphical user interface, text, application, email

Description automatically generated]
8. After confirmation of your CSV file, click on the ‘Send Text Message’ or ‘Send Email’ button.
[image: Graphical user interface, text, application, email

Description automatically generated]
[image: Graphical user interface, application

Description automatically generated]
9. A confirmation message will display stating:
[image: A picture containing text

Description automatically generated]
10. The emails or text messages will be queued to our batch job which will be processed after 5 minutes.
Pleased by advised, if there are a lot of emails to be sent, delivery time may take longer than expected.

[bookmark: _Email_Attachments]

[bookmark: _Toc1392364410]Testing

[bookmark: _Message_Log][bookmark: _Toc719948858]Browser Support
· We recommend using Google Chrome for the most supported UI.
· Internet Explorer I.E. is not supported on our Court Notify Website.

[bookmark: _CallBackURL][bookmark: _How_to_specify]
[bookmark: _Toc1301984456]Release Note
This section describes the history of the production release including the changes, bug fix detail, etc.
10/04/2022: Deploy fix to Client Library NuGet Package for .NET Framework update to version 2.1.
09/20/2022: Adding new V2 for ‘SendTextMessageInBulk’ and ‘SendEmailMessageInBulk’.
09/12/2022: Deploy fix to ‘SendTextMessageInBulk’ operation using the Client Library Standard version.
08/12/2022: Adding new NuGet package for .NET Framework 1.2.0
08/11/2022: Adding new NuGet package for .NET Core.
08/05/2022: Adding a fix to ServiceMonitor on production.
08/04/2022: Added NuGet package with new dependency (HttpClient) and removed RestSharp.
08/01/2022: Add updated Client Libraries to Service Provider website.
07/22/2022: Update Client Library with specifying version 1 using Nuget.
07/20/2022: Create version 1 on APIM Message API with all the existing collections and operations.
07/12/2022: Improve Web API by making the action methods ASYNC and fixing display issue on the Message Group page.
06/24/2022: Deploy fix to RequestResponse on handling multiple replies and update Azure certificates.
06/22/2022: Deploy fix to Sync Email Status regarding invalid emails and remove performance logging.
06/01/2022: Adding new table BulkMessageQueueItem and archiving and purging.
05/26/2022: Refreshed MessageGroup table due to caching when value changes are changed. Added Powerpoint to the Service Provider website for Service Providers to view.
05/23/2022: Enhanced logging on Production. Fixed CreatePhoneLookup issue that is throwing object reference not set.
05/19/2022: Add additional logging.
05/13/2022: Add additional logging.
05/12/2022: Add additional logging.
05/11/2022: Added additional logging for ProcessLogging.
05/09/2022: Added additional logging for ProcessLogging.
05/06/2022: Added missing 500 errorcode to MessageQueueAPIErrorCode table.
05/05/2022: Added additional logging for ProcessLogging, moved MessageQueueErrorCodes and APIError codes to the Database, and adding additional code to ping WebJobs instead of using logic app.
05/04/2022: Fixed issue where a recipient is replying with list commands and not receiving the correct reply back from CourtNotify.
05/02/2022: Adding logging for each step on bulk sending of emails and text messages.
04/25/2022: Added a new logic app to sync the ‘TextConversationLog’ Status and StatusUpdatedOn. Update MessageGroups with ExpireOn that are NULL to have an expire on date to be purged.
04/20/2022: Upgrading Twilio Node.js V12 to be V14.
04/15/2022: Fixed bug related to Stored Procedure for updating TextConversationLog and fixed SyncStatus issue on updating invalid email addresses with the correct Errorcode.
04/13/2022: Fixed bug for object not found on TextConversationlog. Fixed issue with handling commands that weren’t working on Production.
04/06/2022: Improved all untouched API operations and Webjobs.
03/28/2022: Adding Indexing and truncating on Production Database.
03/23/2022: Changed Purging logic to 90 days to enable it to start running.
03/22/2022: Add logging and purging enhancements & add the hotfixes which include fix to Custom SP, Public website, and Send Message operations.
03/09/2022: Add new field ‘CompletedOn’ to ‘BulkMessageQueue’ table.
03/07/2022: Added more logging on Custom SP website, fix incorrect ToDate displaying, fix exporting times, increased the size on unsubscribe page to be bigger, fixed SentOn not being updated if it failed, added ‘ErrorCode’ to callbackurl and made an overlay of the custom sp when loading pages.
03/04/2022: Adding a logic app to alert System Admin if Distributors go down and fix issue with SyncStatusFromTwilio regarding MessageQueue without a MessageId. Fixed issue on CreateVerificationCode with AuthForType. Deploy fix for UnknownValueException thrown with Mailgun.
03/03/2022: Adding a fix to BulkMessageQueue records inserting multiple MessageQueue records for textmessages.
03/02/2022: Added major changes to bulk request handling with new webjobs to distribute and send out messages.
02/14/2022: Added code to remove “on behalf of” on Mailgun.
02/07/2022: Add logging for Stored Procedure to see why a nonbulk message is picked up by a webjob
02/02/2022: Added code to SendTextMessage, SendEmailMessage, and stored procedures to make status as “sending” earlier.
02/01/2022: Modified GetPhoneOptInOut and GetEmailOptInOut to retrieve records that aren’t expired.
01/26/2022: Updated Email deliverability by adding HTML tags in html body, text version of a html email, and list-unsubscribe header.
01/21/2022: Removed logic to mark records as discarded in Sync Email/Text Message.
12/29/2021: Added logging to identify why GetLongURL timeout error is occurring.
12/28/2021: Modified stored procedure to handle orphaned records within 5 minutes and not 5 seconds.
12/20/2021: Create a generic admin account for Prod on Court Notify Custom SP.
12/17/2021: Stopped using Exchange Web Service.
12/13/2021: Add generic message for unhandled errors on Custom SP website, Allow SPs to download information from the Custom SP website, fix error on SyncEmailMessageStatus, convert logic apps to webjob to purge records that have passed the retention date, and add a new database to store archived data.
12/07/2021: Update emailmessage table fields ReplyToEmailUsed and FromEmailUsed to be nvarchar(400), Remove ‘Reply-To Email’ textbox from Custom SP, and add missing fields to .CSV to support Reply-To email and From Email.
12/02/2021: Add logic to Handle duplicated subscriptionNames, support Reply-To Email in Service and Organization, add updates to Custom SP Website, Change SP Site Homepage Title, Add new column ReplyToEmailUsed and Rename EmailSender.
11/10/2021: Added a new table called ‘Organization’ to reference with ‘ClientApp’ table. SP can now specify their ‘FromEmail’ once they register with Los Angeles Superior court. Added logic to separate permanent failures for emails with returned errors and added logic to Sync all domains when updating ‘MessageQueue’ statuses.
11/01/2021: Adding new logic to update SyncStatus for email to update the statuses correctly.
10/28/2021: Turned off Warmup process for dedicated IP on Mailgun.
10/26/2021: !Bug - Prod: Incorrect MQ Status When Mailgun Responds with Blocked Error
10/25/2021: Fixed bug of Mailgun returning “invalid from email” by using RestSharp when calling Mailgun to send the email.
10/18/2021: Add enhancement for RequestQueue Enqueue to trigger all Dequeue WebJobs and improved BulkMessageQueueHandler to split BulkMessageQueue record to MessageQueue records to maximize parallel process.
09/23/2021: Fix bug where ‘MessageQueue’ record is retried after being left as “Sending” and added logging for ‘BulkMessageQueueHandler’ to create duplicate webjobs.
09/22/2021: Fixed Twilio issue of not setting the status to failed, fixed ErrorMessageData on BulkMessageQueue to store proper error message, Added BulkMessageQueueHandler WebJob and MessageQueueHandler WebJob to replace existing logic apps.
08/31/2021: Fixed transient failure on ShortURL.
08/30/2021: Added fix again for DequeueBulkMessageQueue.
08/27/2021: Fixing error from DequeueBulkMessageQueue.
08/24/2021: Added logic to handle failed api requests with enqueueing and dequeueing, when messages are requested from Service Provider, the date and time will now be added, and fixed a bug from the DequeueBulkMessageQueue operation.
08/18/2021: Added .NET Standard library support.
07/22/2021: Fixed bugs on updating SyncEmailMessageStatus to update with temporary failures, added a retention in days for Email and Text Messages, and fixed the error on Custom SP | Send Message page.
07/13/2021: Add new APIs to verify Email and Mobile Number, Create a batch job to purge old file attachments in DB, and a batch job to clean up old expired verification codes.
06/24/2021: Removed extra fields from ‘EmailMessage’ table.
06/02/2021: When a bulk request comes in, it is handled right away with our new logic. Added BulkMessageQueueHandlerInstance table.
05/18/2021: Added a generic error message if an email with an invalid domain is passed through and other system related email errors.
05/11/2021: Added logic for batch job to retrieve all BulkMessageQueue records instead of just one. Event and Appointment will be using our BulkMessaging services. FromEmail has been removed from our API. Fixed Mailgun issue of error 421. SP can now use the GetBulkMessageQueue to retrieve information regarding the BulkMessage messages. Attachments being sent out on Client library now have a compression feature enabled as true.
05/05/2021: Fixed CheckMailGunStatus batch job calling SyncEmailMessage, Added RegEx to accept more fields for Message Group ID in Custom SP, and fixed Custom SP Message Log column Respond? To show if recipient responded or not.
04/29/2021: Removed ‘FromEmail’ from API, Added attachment size with Zip, Implemented EWS with OAuth, Added a new method called GetBulkMessageQueue, SP can now view BulkMessageQueueId on Custom SP after sending a Message.
04/21/2021: Fixed Message Log displaying issue and Services to show UseMessageGroup = True.
[bookmark: _Hlk69719489]04/17/2021: Introduce ReceiptNumber, Add Reply-To, Refactor API, Normalize Email and TextMessage body, Support Email Attachments, Fix Email Service Account field, Add datetime offset and fix of sendtextmessage throwing incorrect APIError 500.
03/30/2021: Fixed bug for Mailgun that returns status as pending instead of failed.
03/29/2021: Disabled Mailgun and Twilio callbackURL to update right away.

03/25/2021: Deployed fix for ‘BulkMessageQueue’ to remove QueuedMessageData after processing and use a stored procedured for BulkMessageQueue in Entity Framework.

03/09/2021: Added a fix to the client helper library to return datetime as UTC.
02/08/2021: Fixed query for ‘SyncEmailStatus’ on selecting Mailgun statuses for “sent”.
02/01/2021: Added Nlogging configurable switch on SysSetting and Appointment to use Mailgun.
1/26/2021: Fixed the response time issue on production that was holding up operations by removing the NLOG switch.
01/21/2021: Added new batchjob to update the status from MailGun if it’s not updated and call webhook of SP to update status for email, Add delay for updating status on failed updates, and fixed NULL values on ‘Email’ and ‘Phone’ table.
01/11/2021: Added new field on Send Message only for ‘Admins’.
01/05/2021: Added new setting to delay update from Twilio.
01/04/2021: Fixing of BulkMessageQueue not populating on the DB. Deploying of Webhooks callbackstatus for MailGun and update to Custom SP Message Detail popup page.
12/24/2020: Added new fix to a bug of MessageQueue table column status not being updated.
12/23/2020: Added new email service provider to send out emails and updated Custom SP with numbering formats.
12/23/2020: Refactored Email and Text Messages and updated our batch job of handling bulk messages.
12/14/2020: Added fix for when a recipient tries to reply back to Court Notify System and there is no response back.
12/11/2020: Added changes to Custom SP website, handling log exception for verificationCode, improved batch job, improved SendTextMessage and SendEmailMessage, Updated Expire On to be 60 days, and added new message for inactive message groups when a customer tries to unsubscribe.
12/3/2020: Creating ‘Message Groups’ page and ‘Send Text Bulk’, Add error page for 404, 500, Fix grammar mistake, Remove item on Configuration on Azure, and Improve Court Notify Header Page
11/17/2020: Improving Error Log for RetrysendMessage and SendTextMessage, Addiing retry logic for RetrySendMessage, & Refactoring MessageId for Text Message.
11/05/2020: Hide reports tab, hide ‘Delete’ link button under Services, fix Service Page on ‘Edit’ to not show query in URL, remove ‘Abbreviation’ from Services, and improve Message Log to support Bulk Message Queue.
[bookmark: _Hlk69719361]11/04/2020: Updated APIError messages with Error ‘113’ and added validation for ‘MessageGroupId’.
[bookmark: _Hlk69719346]11/02/2020: ‘UseMessageGroup’ has been implemented and fix of ‘GetMessageQueue’ on API Calls.
10/29/2020: Make Message Log Site ASYNC loading, Drop down is dynamic on Message Log, Fixed minor validation on uploading CSV files, and added more description of Document and Client Library.
10/28/2020: Fixed the “Loading” issue when user times out.
10/27/2020: Records show everything up to To Date on Message Log, fixed total records displayed on the grid in Message Log and added new page information to display how many records are displayed per page
10/26/2020: Added stored procedure for Message Log page and new changes to Send Bulk Message.
10/23/2020: Added new enhancement to Message Log.
10/20/2020: Added fixes to Send Message and Message Log and changes to ‘Unsubscribe’ from the public website.
10/19/2020: Enhanced Message Log with new bug fixes.
10/16/2020: Message Log and Message Detail has been added. Also, fixed bug where if SP didn’t finish signing up on Profile Page and clicks on the Service Provider Custom website, an error message will occur.
10/15/2020: Added enhanced logic for Text Conversation. Refer to Text Message Replies.
10/13/2020: Added new feature to allow Service Providers to upload a CSV file and send it as an email. Refer to the ‘Send Bulk Online’ section.
09/23/2020: Added exception message for 'RetrySendMessage' and Fixed null value error for ‘SyncStatus’ messages.
09/22/2020: Fixed SyncStatus to update ‘Sending’ Messages.
09/17/2020: Fixed SyncStatus to update ‘Sent’ Messages, Adding ExpireOn logic for MessageGroup, and BulkMessageQueue Table to keep track of bulk messaging. Added ExtendMessageGroupExpiredOn to extend your ExpireOn DateTime if needed and UpdateMessageGroupTitle to change your title for message groups.
09/08/2020: All MessageGroup or Services will now have a bracket [] in the email or text message, Batch Job has been updated to send multiple emails from our new service accounts, Twilio lookup has been implemented to identify more details on why numbers have failed.
08/21/2020: Fixed Logging Error and Updating Error from Log Exception.
08/20/2020: Fixed MessageReplyHandler issue on retrieving incorrect subscription message, fixed CheckTwilioStatus Batchjob, and SQL Server error.
08/14/2020: Fixed error on CheckDisposed function and displaying incorrect title for MessageGroup and Service.
08/11/2020: Updated logic to ‘SyncStatus’ and fixed a batch job error.
08/10/2020: Fixed bug with ‘SyncStatus’.
08/06/2020:
· Added Limit Calls and HTTP Requests Status Codes, updated SendTextMessage, and SendEmailMessage with new information regarding Limit calls.
· Updated Acknowledgement Response to not change the Messagequeue Table Status.
· Added SendTextMessageInBulk and SendEmailMessageInBulk.
· Added Final Delivery Status for Service Providers to know that if a message is undelivered or delivered.
· Added logic to handle invalid messages properly.

07/31/2020: Fixed GetMessageQueue bug to be able to search for all statuses regardless of them being “Failed” or “Sent”.
07/28/2020: CourtNotifySp now has an official domain.
07/06/2020: Added new logic for GetNewCode on reusing verification code.
05/27/2020: Added acknowledgment response for SendTextMessage and SendEmailMessage.
05/11/2020: Log Exception framework to log errors. Added new error codes.
04/23/2020: Added column “TryCount” in MessageQueue. Added logic to handle pending messages.
04/22/2020: Added ActivateMessageGroup API, CheckEmailStatus API, CheckMobileNumber API.
04/20/2020: Added Twilio logic to retry messages.
04/17/2020: Improved Batchjob for alerts, Fixed punctuation on APIError messages, and Fixed APIError return from GetMessageQueueLog
04/10/2020: WebAPI config on App Service is configurable for all Environments.
04/09/2020: Implemented feature to log when a customer signs on the SP website.
04/08/2020: Fixed batch job SyncStatus to update statuses with failed correctly.
04/07/2020: Added logic to update Message Queue status with Twilio statuses not yet added and added HideUnsubscribe as a return value for GetMessageQueue and GetMessageQueueLog.
04/06/2020: Added AuditLog feature to keep track of changes made on Services and Client Applications, fixed bug when services are disabled, operations should not work, and reorganized APIs for Client App.
04/01/2020: Added HideUnsubscribe field to SendEmailMessage
03/28/2020: Fixed the bug to update the correct field for DateTime when updating Services.
03/27/2020: Fixed Invalid mobile numbers on SendTextMessage. Added new operation GetNewCodeWithExpireOn.
03/26/2020: Fixed API Error Code for GetMessageQueueLog and DeactivateMessageGroup.
03/25/2020: Updated the subscription logic and changed verbiage for Text Messages.
03/24/2020: Admin page update.
03/23/2020: Added logic to check all status in the batch job. Added logic to make MessageGroupTitle a required field now when sending messages with MessageGroupId.
03/16/2020: Added browser support.
3/12/2020: Service Provider Website – Updated API Client Library for .NET Core 2.0 and 3.0. Added new features when a Service Provider registers for a client application. Secrets have been changed. An access token has been fixed.
3/4/2020: Service Provider Website – basic Service management features are added. The basic process is now fully available.
3/3/2020: API Client Library for .NET (Core and Framework) version is available.
2/4/2020: API – the initial version of API (version 1) is launched. API is ready to send text and email messages.

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

